Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
150887341619053240496711 ~2012
1508910535927160389646312 ~2013
150893575339053614519911 ~2012
150899450993017989019911 ~2011
150916767833018335356711 ~2011
1509188500712073508005712 ~2012
150919358513018387170311 ~2011
1509205913912073647311312 ~2012
150925261313018505226311 ~2011
150927083033018541660711 ~2011
150927103433018542068711 ~2011
150932960513018659210311 ~2011
150933584993018671699911 ~2011
1509364774324149836388912 ~2013
150963027233019260544711 ~2011
150970605713019412114311 ~2011
150973238633019464772711 ~2011
150978145193019562903911 ~2011
150985652393019713047911 ~2011
150988453733128...61285714 2024
150990605513019812110311 ~2011
150992740313019854806311 ~2011
1509984666727179724000712 ~2013
150999692819059981568711 ~2012
1510104151112080833208912 ~2012
Exponent Prime Factor Dig. Year
151010632913020212658311 ~2011
151015887379060953242311 ~2012
151017853793020357075911 ~2011
151019865833020397316711 ~2011
151019932433020398648711 ~2011
1510231393112081851144912 ~2012
151032204379061932262311 ~2012
1510376839112083014712912 ~2012
151051887233021037744711 ~2011
151066774739064006483911 ~2012
1510715890148342908483312 ~2013
151076104313021522086311 ~2011
151088259233021765184711 ~2011
151088901233021778024711 ~2011
151111404593022228091911 ~2011
151112416433022248328711 ~2011
151120009793022400195911 ~2011
151124169113022483382311 ~2011
151126384793022527695911 ~2011
151140011633022800232711 ~2011
151142135633022842712711 ~2011
151159813793023196275911 ~2011
151176517139070591027911 ~2012
151179211913023584238311 ~2011
151186548233023730964711 ~2011
Exponent Prime Factor Dig. Year
1511877829163498868822312 ~2014
151201840433024036808711 ~2011
151202342033024046840711 ~2011
151205120633024102412711 ~2011
1512177952112097423616912 ~2012
151226094233024521884711 ~2011
151230323993024606479911 ~2011
1512373241321173225378312 ~2013
151239304433024786088711 ~2011
1512575855321176061974312 ~2013
151258799633025175992711 ~2011
1512649225721177089159912 ~2013
151267976633025359532711 ~2011
151269957833025399156711 ~2011
151270197179076211830311 ~2012
151276502033025530040711 ~2011
1512779098736306698368912 ~2013
151278622793025572455911 ~2011
151280040113025600802311 ~2011
1512819248912102553991312 ~2012
1512845270972616573003312 ~2014
151290334433025806688711 ~2011
1512930086912103440695312 ~2012
151295062793025901255911 ~2011
151296996593025939931911 ~2011
Exponent Prime Factor Dig. Year
1512997374133285942230312 ~2013
151321816793026436335911 ~2011
151326177379079570642311 ~2012
151354675793027093515911 ~2011
151354896139081293767911 ~2012
151358338313027166766311 ~2011
151380067913027601358311 ~2011
151386318113027726362311 ~2011
151389001913027780038311 ~2011
151390040993027800819911 ~2011
151397433833027948676711 ~2011
1514139912724226238603312 ~2013
151421004739085260283911 ~2012
151421852033028437040711 ~2011
151445218913028904378311 ~2011
151449195779026...67892114 2025
151449868913028997378311 ~2011
151462953713029259074311 ~2011
151474366913029487338311 ~2011
151475928713029518574311 ~2011
151496825993029936519911 ~2011
151497466793029949335911 ~2011
151500969113030019382311 ~2011
151502607113030052142311 ~2011
151504827179090289630311 ~2012
Home
4.888.230 digits
e-mail
25-06-29