Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
189568998233791379964711 ~2011
1895832827311374996963912 ~2012
1896161023311376966139912 ~2012
189635728433792714568711 ~2011
189639933113792798662311 ~2011
189640664633792813292711 ~2011
189642641993792852839911 ~2011
1896587407964483971868712 ~2014
189664090433793281808711 ~2011
189664855793793297115911 ~2011
1896698836318966988363112 ~2013
1896722625130347562001712 ~2013
189679705193793594103911 ~2011
189683836913793676738311 ~2011
1897010844718970108447112 ~2013
1897161766318971617663112 ~2013
189717128993794342579911 ~2011
189717951233794359024711 ~2011
189722881193794457623911 ~2011
1897396592915179172743312 ~2013
189741202793794824055911 ~2011
1897519351311385116107912 ~2012
189752635193795052703911 ~2011
1897551792730360828683312 ~2013
189758322833795166456711 ~2011
Exponent Prime Factor Dig. Year
189761574233795231484711 ~2011
189763089593795261791911 ~2011
189776285993795525719911 ~2011
189782620913795652418311 ~2011
189783399833795667996711 ~2011
189785433833795708676711 ~2011
189786238433795724768711 ~2011
189786910193795738203911 ~2011
189789820913795796418311 ~2011
189792913193795858263911 ~2011
189799075433795981508711 ~2011
189802263713796045274311 ~2011
189811292033796225840711 ~2011
189814756313796295126311 ~2011
1898224014111389344084712 ~2012
189825712913796514258311 ~2011
189827051513796541030311 ~2011
189829356593796587131911 ~2011
189846174233796923484711 ~2011
1898638585715189108685712 ~2013
189868040513797360810311 ~2011
1898774836115190198688912 ~2013
1898840488715190723909712 ~2013
189889520393797790407911 ~2011
189891486833797829736711 ~2011
Exponent Prime Factor Dig. Year
1899022085326586309194312 ~2013
1899195939118991959391112 ~2013
189923848913798476978311 ~2011
1899295631915194365055312 ~2013
189950811233799016224711 ~2011
189962887433799257748711 ~2011
1899860014330397760228912 ~2013
189991294913799825898311 ~2011
1899988111311399928667912 ~2012
190006101593800122031911 ~2011
190006269233800125384711 ~2011
190010822393800216447911 ~2011
190015461833800309236711 ~2011
190017815033800356300711 ~2011
190018955513800379110311 ~2011
190025942513800518850311 ~2011
190038686993800773739911 ~2011
1900535682730408570923312 ~2013
190059355793801187115911 ~2011
1900627594330410041508912 ~2013
190070454713801409094311 ~2011
190080635513801612710311 ~2011
190080671633801613432711 ~2011
1900845145711405070874312 ~2012
1900932587915207460703312 ~2013
Exponent Prime Factor Dig. Year
190101157913802023158311 ~2011
190111003193802220063911 ~2011
190121037833802420756711 ~2011
190121775593802435511911 ~2011
190123115993802462319911 ~2011
190128787433802575748711 ~2011
1901378952730422063243312 ~2013
190152211193803044223911 ~2011
190155750113803115002311 ~2011
190162274033803245480711 ~2011
190162880033803257600711 ~2011
1901656867311409941203912 ~2012
190177128233803542564711 ~2011
190180694033803613880711 ~2011
190184001713803680034311 ~2011
190184089433803681788711 ~2011
1901892244941841629387912 ~2014
190192462193803849243911 ~2011
1901935144715215481157712 ~2013
190199139593803982791911 ~2011
190202434913804048698311 ~2011
190218610313804372206311 ~2011
190240327433804806548711 ~2011
190244635193804892703911 ~2011
1902451410719024514107112 ~2013
Home
4.724.182 digits
e-mail
25-04-13