Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
165147161033302943220711 ~2011
165150125993303002519911 ~2011
1651523280716515232807112 ~2013
165155096633303101932711 ~2011
165163700993303274019911 ~2011
165167993633303359872711 ~2011
165174909113303498182311 ~2011
1651760521916517605219112 ~2013
165180441113303608822311 ~2011
165183405233303668104711 ~2011
165185006419911100384711 ~2012
165186943433303738868711 ~2011
165192470579911548234311 ~2012
165193834379911630062311 ~2012
165204624113304092482311 ~2011
165217937513304358750311 ~2011
165218510513304370210311 ~2011
165219364433304387288711 ~2011
165219729833304394596711 ~2011
1652249050713217992405712 ~2012
165225803513304516070311 ~2011
1652306036913218448295312 ~2012
165243795833304875916711 ~2011
1652491893776014627110312 ~2014
165254129993305082599911 ~2011
Exponent Prime Factor Dig. Year
165259431113305188622311 ~2011
165267743393305354867911 ~2011
165271190513305423810311 ~2011
165272915033305458300711 ~2011
165302105339918126319911 ~2012
165312428033306248560711 ~2011
1653170035142982420912712 ~2014
165319443233306388864711 ~2011
1653238204729758287684712 ~2013
165327978713306559574311 ~2011
165334490393306689807911 ~2011
165337582313306751646311 ~2011
165344343593306886871911 ~2011
165347995313306959906311 ~2011
165356720633307134412711 ~2011
165358556633307171132711 ~2011
165367464833307349296711 ~2011
165374164193307483283911 ~2011
165388346993307766939911 ~2011
165396802939923808175911 ~2012
165406634219924398052711 ~2012
165407440193308148803911 ~2011
165409756313308195126311 ~2011
165410406233308208124711 ~2011
165415321793308306435911 ~2011
Exponent Prime Factor Dig. Year
1654201244913233609959312 ~2012
165421076633308421532711 ~2011
165422250833308445016711 ~2011
165425670019925540200711 ~2012
165430221233308604424711 ~2011
165433434833308668696711 ~2011
165436007633308720152711 ~2011
165438785779926327146311 ~2012
165444913913308898278311 ~2011
165446504033308930080711 ~2011
165456596393309131927911 ~2011
165463503233309270064711 ~2011
165467390633309347812711 ~2011
1654699900316546999003112 ~2013
165470596313309411926311 ~2011
165473096513309461930311 ~2011
165478906793309578135911 ~2011
165483938633309678772711 ~2011
165493391513309867830311 ~2011
165495378833309907576711 ~2011
165503295713310065914311 ~2011
165504870593310097411911 ~2011
1655072187116550721871112 ~2013
165514671113310293422311 ~2011
1655155616949654668507112 ~2014
Exponent Prime Factor Dig. Year
165517837193310356743911 ~2011
165517862393310357247911 ~2011
165518652233310373044711 ~2011
165519427793310388555911 ~2011
165521674313310433486311 ~2011
165526634993310532699911 ~2011
165546509393310930187911 ~2011
1655506587116555065871112 ~2013
165552474593311049491911 ~2011
165555940313311118806311 ~2011
165563306393311266127911 ~2011
165572188579934331314311 ~2012
165584816033311696320711 ~2011
165586693433311733868711 ~2011
165588977033311779540711 ~2011
165591203393311824067911 ~2011
1656066289336433458364712 ~2013
1656101674316561016743112 ~2013
1656112158716561121587112 ~2013
165615243833312304876711 ~2011
165623922619937435356711 ~2012
165624099713312481994311 ~2011
165625225193312504503911 ~2011
165634754513312695090311 ~2011
165645268979938716138311 ~2012
Home
4.888.230 digits
e-mail
25-06-29