Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
1503619091912028952735312 ~2012
1503635440712029083525712 ~2012
150367244033007344880711 ~2010
150371968313007439366311 ~2010
150373050979022383058311 ~2012
150382141793007642835911 ~2010
150387693593007753871911 ~2010
150394847939023690875911 ~2012
1504031911324064510580912 ~2013
1504060532945121815987112 ~2013
150407226593008144531911 ~2010
150417421139025045267911 ~2012
150419805593008396111911 ~2010
150434150993008683019911 ~2010
150434290913008685818311 ~2010
150440691233008813824711 ~2010
150446439179026786350311 ~2012
150448068113008961362311 ~2010
150456127339027367639911 ~2012
150457123939027427435911 ~2012
150458339633009166792711 ~2010
150460929233009218584711 ~2010
150473174513009463490311 ~2010
150476746793009534935911 ~2010
1504790965972229966363312 ~2014
Exponent Prime Factor Dig. Year
150482082371661...89364914 2024
150483251633009665032711 ~2010
150484248833009684976711 ~2010
150499126793009982535911 ~2010
150500534779030032086311 ~2012
150502988633010059772711 ~2010
150513368513010267370311 ~2010
150517378193010347563911 ~2010
150524618633010492372711 ~2010
150527917311168...38325714 2023
1505376186724086018987312 ~2013
150543400793010868015911 ~2010
150544241393010884827911 ~2010
150548819513010976390311 ~2010
150552647513011052950311 ~2010
150566648819033998928711 ~2012
150567394793011347895911 ~2010
150567804113011356082311 ~2010
150572778833011455576711 ~2010
150573775913011475518311 ~2010
150575988593011519771911 ~2010
1505824763936139794333712 ~2013
1505868697721082161767912 ~2013
150593349713011866994311 ~2010
1505953741745178612251112 ~2013
Exponent Prime Factor Dig. Year
150598210793011964215911 ~2010
150599404913011988098311 ~2010
1506041671915060416719112 ~2012
150617591513012351830311 ~2010
1506188607127111394927912 ~2013
150623130833012462616711 ~2010
150624302779037458166311 ~2012
1506288560912050308487312 ~2012
150633117593012662351911 ~2010
150636021113012720422311 ~2010
1506393140912051145127312 ~2012
150643612193012872243911 ~2010
150652450379039147022311 ~2012
150654515033013090300711 ~2010
1506646303712053170429712 ~2012
150665860339039951619911 ~2012
1506668046715066680467112 ~2012
150672982939040378975911 ~2012
150684298913013685978311 ~2010
1506999774133153995030312 ~2013
150704147393014082947911 ~2010
150714120539042847231911 ~2012
1507165288712057322309712 ~2012
150716719913014334398311 ~2010
1507291356724116661707312 ~2013
Exponent Prime Factor Dig. Year
150732241193014644823911 ~2011
150738976913014779538311 ~2011
150739627193014792543911 ~2011
150750396593015007931911 ~2011
150769564913015391298311 ~2011
150775816433015516328711 ~2011
150794608433015892168711 ~2011
150800094593016001891911 ~2011
150801885233016037704711 ~2011
150816399833016327996711 ~2011
1508199267124131188273712 ~2013
1508242069712065936557712 ~2012
150825539393016510787911 ~2011
150826337393016526747911 ~2011
150831982193016639643911 ~2011
150837239393016744787911 ~2011
150845244379050714662311 ~2012
150855192833017103856711 ~2011
150863863193017277263911 ~2011
150864633739051878023911 ~2012
1508649362339224883419912 ~2013
150872453393017449067911 ~2011
150874803713017496074311 ~2011
150878755313017575106311 ~2011
1508850475915088504759112 ~2012
Home
4.888.230 digits
e-mail
25-06-29