Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
151505475379090328522311 ~2012
151507301513030146030311 ~2011
151509941393030198827911 ~2011
151510046633030200932711 ~2011
151514338793030286775911 ~2011
151516944713030338894311 ~2011
1515176498912121411991312 ~2012
151520518913030410378311 ~2011
151526578793030531575911 ~2011
151533622193030672443911 ~2011
1515338155721214734179912 ~2013
151551329033031026580711 ~2011
151553484713031069694311 ~2011
151560873113031217462311 ~2011
151563286619093797196711 ~2012
151564772393031295447911 ~2011
151574753513031495070311 ~2011
151577577113031551542311 ~2011
1515814552112126516416912 ~2012
151581509393031630187911 ~2011
151588150433031763008711 ~2011
151598165993031963319911 ~2011
151598356793031967135911 ~2011
151603290593032065811911 ~2011
151611074993032221499911 ~2011
Exponent Prime Factor Dig. Year
151621397033032427940711 ~2011
151628529233032570584711 ~2011
151642373393032847467911 ~2011
151645828433032916568711 ~2011
151647418313032948366311 ~2011
151648776713032975534311 ~2011
151649564513032991290311 ~2011
151653126113033062522311 ~2011
151666321913033326438311 ~2011
151667173433033343468711 ~2011
151668620993033372419911 ~2011
151670149313033402986311 ~2011
151670615993033412319911 ~2011
151681163939100869835911 ~2012
1516821270124269140321712 ~2013
151683871193033677423911 ~2011
151685398433033707968711 ~2011
151688575139101314507911 ~2012
151692198833033843976711 ~2011
151694512019101670720711 ~2012
151695863633033917272711 ~2011
151697938979101876338311 ~2012
151698443033033968860711 ~2011
1516998250736407958016912 ~2013
151700811833034016236711 ~2011
Exponent Prime Factor Dig. Year
151702416833034048336711 ~2011
151706597993034131959911 ~2011
151707386219102443172711 ~2012
1517094329912136754639312 ~2012
151712694713034253894311 ~2011
1517179319912137434559312 ~2012
151726405193034528103911 ~2011
151729410379103764622311 ~2012
151733358233034667164711 ~2011
151740093593034801871911 ~2011
151742102033034842040711 ~2011
151745708393034914167911 ~2011
1517552143721245730011912 ~2013
151768126913035362538311 ~2011
151768342379106100542311 ~2012
151780620233035612404711 ~2011
151789380113035787602311 ~2011
151791077633035821552711 ~2011
151796175019107770500711 ~2012
151798902619107934156711 ~2012
151802729513036054590311 ~2011
151809765713036195314311 ~2011
151810470833036209416711 ~2011
151831311233036626224711 ~2011
151846204619110772276711 ~2012
Exponent Prime Factor Dig. Year
151847320913036946418311 ~2011
151859990393037199807911 ~2011
151866076433037321528711 ~2011
151866884033037337680711 ~2011
151885746233037714924711 ~2011
151891158713037823174311 ~2011
151892135513037842710311 ~2011
151895938193037918763911 ~2011
1519076156339495980063912 ~2013
151917994313038359886311 ~2011
1519182267163805655218312 ~2014
1519212914912153703319312 ~2012
151925437913038508758311 ~2011
1519346902112154775216912 ~2012
151937686193038753723911 ~2011
151942156913038843138311 ~2011
151944752393038895047911 ~2011
151945025033038900500711 ~2011
1519530430315195304303112 ~2012
151955108993039102179911 ~2011
151962533393039250667911 ~2011
151972739513039454790311 ~2011
151975163033039503260711 ~2011
151980355793039607115911 ~2011
1519887865721278430119912 ~2013
Home
4.888.230 digits
e-mail
25-06-29