Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
116592523312331850466311 ~2010
116598851032331977020711 ~2010
116606144992332122899911 ~2010
116607211792332144235911 ~2010
116611558616996693516711 ~2011
116612377816996742668711 ~2011
1166205076727988921840912 ~2012
116631331136997879867911 ~2011
116635434832332708696711 ~2010
116636212432332724248711 ~2010
116637138299330971063311 ~2011
1166566523316331931326312 ~2012
1166600400125665208802312 ~2012
116662856819333028544911 ~2011
116663728432333274568711 ~2010
116665305232333306104711 ~2010
116669247712333384954311 ~2010
116671888312333437766311 ~2010
116690311192333806223911 ~2010
116694373192333887463911 ~2010
116695120912333902418311 ~2010
116697105232333942104711 ~2010
116703385792334067715911 ~2010
1167098613728010366728912 ~2012
116715083992334301679911 ~2010
Exponent Prime Factor Dig. Year
116724521177003471270311 ~2011
116741633392334832667911 ~2010
116749980592334999611911 ~2010
116751024592335020491911 ~2010
116754474112335089482311 ~2010
116761653592335233071911 ~2010
116762278817005736728711 ~2011
116770792792335415855911 ~2010
116771914792335438295911 ~2010
116773090319341847224911 ~2011
116775612112335512242311 ~2010
116780591992335611839911 ~2010
116783844112335676882311 ~2010
116790499817007429988711 ~2011
1167914281911679142819112 ~2011
1167921055921022579006312 ~2012
116792467312335849346311 ~2010
1167932788721022790196712 ~2012
116804990632336099812711 ~2010
116806069192336121383911 ~2010
116806986712336139734311 ~2010
1168100154711681001547112 ~2011
116814151432336283028711 ~2010
116829920392336598407911 ~2010
116835478192336709563911 ~2010
Exponent Prime Factor Dig. Year
116841547192336830943911 ~2010
116842214632336844292711 ~2010
116843275912336865518311 ~2010
116843934779347514781711 ~2011
116849786032336995720711 ~2010
116854421177011265270311 ~2011
116855017312337100346311 ~2010
116856464992337129299911 ~2010
1168600348721034806276712 ~2012
116863280217011796812711 ~2011
1168765403928050369693712 ~2012
116881710232337634204711 ~2010
116882275813625...95626314 2024
116883493912337669878311 ~2010
116893703337013622199911 ~2011
116898791392337975827911 ~2010
116900381032338007620711 ~2010
116900559479352044757711 ~2011
116902160992338043219911 ~2010
116914365832338287316711 ~2010
116919662632338393252711 ~2010
116922415312338448306311 ~2010
116922992632338459852711 ~2010
1169259910311692599103112 ~2011
116929489192338589783911 ~2010
Exponent Prime Factor Dig. Year
116933439232338668784711 ~2010
116938448032338768960711 ~2010
1169391864118710269825712 ~2012
116940097312338801946311 ~2010
1169401306318710420900912 ~2012
116940631312338812626311 ~2010
116952903112339058062311 ~2010
116956638779356531101711 ~2011
116963733232339274664711 ~2010
116964791032339295820711 ~2010
116977987432339559748711 ~2010
116980042432339600848711 ~2010
116982339832339646796711 ~2010
1169847241328076333791312 ~2012
1169925939118718815025712 ~2012
116993111032339862220711 ~2010
116996640592339932811911 ~2010
116997718192339954363911 ~2010
116999845912339996918311 ~2010
117000210712340004214311 ~2010
117002087632340041752711 ~2010
117010526819360842144911 ~2011
117014496592340289931911 ~2010
117017430299361394423311 ~2011
117023111579361848925711 ~2011
Home
4.888.230 digits
e-mail
25-06-29