Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
62037674391240753487911 ~2007
62037965031240759300711 ~2007
62040293574963223485711 ~2009
62041290831240825816711 ~2007
62046027174963682173711 ~2009
62046102591240922051911 ~2007
62051377911241027558311 ~2007
62051870631241037412711 ~2007
62054416914964353352911 ~2009
62055334978687746895911 ~2010
62055929031241118580711 ~2007
62058369111241167382311 ~2008
620686348326068826628712 ~2011
62069266791241385335911 ~2008
62070649911241412998311 ~2008
62071971591241439431911 ~2008
62072733111241454662311 ~2008
62073770511241475410311 ~2008
62073878631241477572711 ~2008
62074299831241485996711 ~2008
62074528573724471714311 ~2009
62075174511241503490311 ~2008
62076690774966135261711 ~2009
62076839031241536780711 ~2008
62079954076207995407111 ~2009
Exponent Prime Factor Dig. Year
62081990694966559255311 ~2009
62088447231241768944711 ~2008
62088661794967092943311 ~2009
62088977631241779552711 ~2008
62090316591241806331911 ~2008
62090324991241806499911 ~2008
62090544591241810891911 ~2008
62090647911241812958311 ~2008
62094478791241889575911 ~2008
62096381991241927639911 ~2008
62096873391241937467911 ~2008
62104420613726265236711 ~2009
62105168813726310128711 ~2009
62106042591242120851911 ~2008
62108184591242163691911 ~2008
621096289714906310952912 ~2010
62110789431242215788711 ~2008
62112251991242245039911 ~2008
62114153116211415311111 ~2009
62115059991242301199911 ~2008
62115200391242304007911 ~2008
62115694431242313888711 ~2008
62116258791242325175911 ~2008
62116965778696375207911 ~2010
62123569573727414174311 ~2009
Exponent Prime Factor Dig. Year
62123851074969908085711 ~2009
62124139733727448383911 ~2009
62124484013727469040711 ~2009
62124573711242491474311 ~2008
62124759796212475979111 ~2009
62124894111242497882311 ~2008
62126546991242530939911 ~2008
62127230631242544612711 ~2008
62128467231242569344711 ~2008
62130432714970434616911 ~2009
62132322474970585797711 ~2009
62133027413727981644711 ~2009
62134035973728042158311 ~2009
62143293013728597580711 ~2009
62146849191242936983911 ~2008
62148183831242963676711 ~2008
62151445573729086734311 ~2009
62152246939944359508911 ~2010
621522521314916540511312 ~2010
62152613031243052260711 ~2008
62153555511243071110311 ~2008
62154030591243080611911 ~2008
62155706391243114127911 ~2008
62155735791243114715911 ~2008
62158912396215891239111 ~2009
Exponent Prime Factor Dig. Year
62160487431243209748711 ~2008
62169232879947077259311 ~2010
62169626511243392530311 ~2008
62169950031243399000711 ~2008
62170037391243400747911 ~2008
62170752111243415042311 ~2008
62171304591243426091911 ~2008
62172037494973762999311 ~2009
621732045733573530467912 ~2011
62173548831243470976711 ~2008
62174741631243494832711 ~2008
62174985591243499711911 ~2008
62177060031243541200711 ~2008
62179291996217929199111 ~2009
62180239911243604798311 ~2008
62183046111243660922311 ~2008
621832732913680320123912 ~2010
62183992194974719375311 ~2009
62184460494974756839311 ~2009
62185867191243717343911 ~2008
62186901111243738022311 ~2008
62186977614974958208911 ~2009
62189239791243784795911 ~2008
62190030231243800604711 ~2008
62190131031243802620711 ~2008
Home
5.157.210 digits
e-mail
25-11-02