Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
203407008114068140162311 ~2012
2034091519716272732157712 ~2013
2034237044916273896359312 ~2013
203426871714068537434311 ~2012
2034362748720343627487112 ~2013
203437227714068744554311 ~2012
2034605737920346057379112 ~2013
203462570514069251410311 ~2012
2034732913312208397479912 ~2013
203476571394069531427911 ~2012
203479646394069592927911 ~2012
203486604114069732082311 ~2012
203496113514069922270311 ~2012
203498651034069973020711 ~2012
203511203514070224070311 ~2012
203517996834070359936711 ~2012
2035199986112211199916712 ~2013
203544183234070883664711 ~2012
203551720314071034406311 ~2012
203556450594071129011911 ~2012
203583768594071675371911 ~2012
203607503394072150067911 ~2012
2036186821332578989140912 ~2014
203626197234072523944711 ~2012
203627718234072554364711 ~2012
Exponent Prime Factor Dig. Year
2036324939312217949635912 ~2013
203641137234072822744711 ~2012
203651537514073030750311 ~2012
2036552861916292422895312 ~2013
203659957194073199143911 ~2012
203697727434073954548711 ~2012
2037037016916296296135312 ~2013
203706438834074128776711 ~2012
203710449234074208984711 ~2012
203711565492248...83009714 2024
203719450914074389018311 ~2012
2037222192144818888226312 ~2014
203729689194074593783911 ~2012
203734171914074683438311 ~2012
203734366194074687323911 ~2012
203735459994074709199911 ~2012
203741188794074823775911 ~2012
203742406194074848123911 ~2012
2037507618748900182848912 ~2014
203753342994075066859911 ~2012
2037562700348901504807312 ~2014
2037730351712226382110312 ~2013
203776514034075530280711 ~2012
203785828914075716578311 ~2012
203793877794075877555911 ~2012
Exponent Prime Factor Dig. Year
203798780634075975612711 ~2012
203804238594076084771911 ~2012
203817612714076352254311 ~2012
2038467997712230807986312 ~2013
2038568371312231410227912 ~2013
203859075234077181504711 ~2012
2038597179712231583078312 ~2013
2038648618716309188949712 ~2013
2038698771712232192630312 ~2013
203888941314077778826311 ~2012
2039044365120390443651112 ~2013
203911900914078238018311 ~2012
203913882714078277654311 ~2012
203916953994078339079911 ~2012
2039184922716313479381712 ~2013
2039187781712235126690312 ~2013
203922079434078441588711 ~2012
203924453034078489060711 ~2012
203926005171398...95466314 2023
203933487114078669742311 ~2012
203940019314078800386311 ~2012
203970219714079404394311 ~2012
2039715045132635440721712 ~2014
203983297794079665955911 ~2012
203991721914079834438311 ~2012
Exponent Prime Factor Dig. Year
2039925409712239552458312 ~2013
204001254234080025084711 ~2012
204002555034080051100711 ~2012
204012418314080248366311 ~2012
2040158658720401586587112 ~2013
204020251314080405026311 ~2012
204028827711326...80115114 2023
2040403955312242423731912 ~2013
2040431649732646906395312 ~2014
204052317834081046356711 ~2012
2040553877312243323263912 ~2013
204067610994081352219911 ~2012
204082483314081649666311 ~2012
204103036194082060723911 ~2012
2041078982916328631863312 ~2013
2041097715748986345176912 ~2014
204114582834082291656711 ~2012
2041164743328576306406312 ~2014
2041168441728576358183912 ~2014
204120534114082410682311 ~2012
2041239035328577346494312 ~2014
2041299214112247795284712 ~2013
204138135834082762716711 ~2012
204138552714082771054311 ~2012
2041450276332663204420912 ~2014
Home
4.724.182 digits
e-mail
25-04-13