Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
93765570831875311416711 ~2009
93766411191875328223911 ~2009
93770168991875403379911 ~2009
93772169631875443392711 ~2009
93774672591875493451911 ~2009
93774948831875498976711 ~2009
93775013631875500272711 ~2009
93775418697502033495311 ~2010
93781345431875626908711 ~2009
93782416431875648328711 ~2009
93783047391875660947911 ~2009
93783326335626999579911 ~2010
937863154145017431396912 ~2012
93787472391875749447911 ~2009
93791100799379110079111 ~2011
93792207975627532478311 ~2010
93792306111875846122311 ~2009
93794562591875891251911 ~2009
93796720191875934403911 ~2009
93807783711876155674311 ~2009
93809799831876195996711 ~2009
93811003575628660214311 ~2010
93811712031876234240711 ~2009
93813406791876268135911 ~2009
93818308311876366166311 ~2009
Exponent Prime Factor Dig. Year
93821086431876421728711 ~2009
93822204111876444082311 ~2009
93822215391876444307911 ~2009
93824474991876489499911 ~2009
938245184324394374791912 ~2012
93824676831876493536711 ~2009
93826247631876524952711 ~2009
93828066597506245327311 ~2010
93834895135630093707911 ~2010
938397623313137566726312 ~2011
93845926215630755572711 ~2010
93848318031876966360711 ~2009
93849943191876998863911 ~2009
93850818591877016371911 ~2009
93854414511877088290311 ~2009
93856103031877122060711 ~2009
93857976231877159524711 ~2009
93858439191877168783911 ~2009
93861488991877229779911 ~2009
93862355391877247107911 ~2009
93867091335632025479911 ~2010
93867463311877349266311 ~2009
93870008391877400167911 ~2009
93870288231877405764711 ~2009
938717172722529212144912 ~2012
Exponent Prime Factor Dig. Year
93876027711877520554311 ~2009
93876668335632600099911 ~2010
93876734997510138799311 ~2010
93884247111877684942311 ~2009
93884253111877685062311 ~2009
93890202415633412144711 ~2010
93895021191877900423911 ~2009
93895927911877918558311 ~2009
93898193575633891614311 ~2010
93899639631877992792711 ~2009
93903444711878068894311 ~2009
939048807161977221268712 ~2013
939126540745078073953712 ~2012
93916018375634961102311 ~2010
93920168991878403379911 ~2009
939255487922542131709712 ~2012
93933195711878663914311 ~2009
93934171791878683435911 ~2009
93935170791878703415911 ~2009
93940992231878819844711 ~2009
93943813617515505088911 ~2010
939446131337577845252112 ~2012
93950096391879001927911 ~2009
93950214831879004296711 ~2009
93950764791879015295911 ~2009
Exponent Prime Factor Dig. Year
93952033791879040675911 ~2009
93954334311879086686311 ~2009
939601202324429631259912 ~2012
93960811735637648703911 ~2010
93961135911879222718311 ~2009
93962871711879257434311 ~2009
93963658791879273175911 ~2009
939644419916913599558312 ~2011
93965127711879302554311 ~2009
93966217911879324358311 ~2009
93970894791879417895911 ~2009
93977191135638631467911 ~2010
93979536831879590736711 ~2009
93979773111879595462311 ~2009
93986063511879721270311 ~2009
93991119375639467162311 ~2010
93993379911879867598311 ~2009
93995519391879910387911 ~2009
939973395715039574331312 ~2011
94000533199400053319111 ~2011
94001388231880027764711 ~2009
94004274175640256450311 ~2010
94005716391880114327911 ~2009
94005874335640352459911 ~2010
940075531713161057443912 ~2011
Home
4.888.230 digits
e-mail
25-06-29