Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
1847986463311087918779912 ~2012
184800046193696000923911 ~2011
184801766513696035330311 ~2011
1848134712111088808272712 ~2012
184818832793696376655911 ~2011
1848220386729571526187312 ~2013
1848351029311090106175912 ~2012
1848421772925877904820712 ~2013
184845733793696914675911 ~2011
184853697233697073944711 ~2011
1848555063729576881019312 ~2013
184868333633697366672711 ~2011
184868569193697371383911 ~2011
184868631233697372624711 ~2011
1848691701118486917011112 ~2013
184871459033697429180711 ~2011
1848803419714790427357712 ~2013
184893149993697862999911 ~2011
1848937404111093624424712 ~2012
1848939763714791518109712 ~2013
184896079433697921588711 ~2011
184898452193697969043911 ~2011
184918867793698377355911 ~2011
184922615033698452300711 ~2011
184932691913698653838311 ~2011
Exponent Prime Factor Dig. Year
1849332961114794663688912 ~2013
184962021713699240434311 ~2011
1849660009159189120291312 ~2014
184981088513699621770311 ~2011
184990737833699814756711 ~2011
1850166883114801335064912 ~2013
1850226084140704973850312 ~2014
1850272138329604354212912 ~2013
185037620993700752419911 ~2011
185052028793701040575911 ~2011
185054167313701083346311 ~2011
1850855375311105132251912 ~2012
1850902853914807222831312 ~2013
1850981665711105889994312 ~2012
1851089529711106537178312 ~2012
1851092515714808740125712 ~2013
1851166280914809330247312 ~2013
185118972233702379444711 ~2011
1851238402714809907221712 ~2013
1851241001344429784031312 ~2014
1851273271714810186173712 ~2013
185128644233702572884711 ~2011
185128751033702575020711 ~2011
185139818033702796360711 ~2011
1851405366718514053667112 ~2013
Exponent Prime Factor Dig. Year
185162602913703252058311 ~2011
185166284513703325690311 ~2011
1851680813914813446511312 ~2013
185169927713703398554311 ~2011
1851971854114815774832912 ~2013
185202730913704054618311 ~2011
185213209433704264188711 ~2011
185220682193704413643911 ~2011
185224997393704499947911 ~2011
185259648833705192976711 ~2011
185285372993705707459911 ~2011
185287373033705747460711 ~2011
185291823833705836476711 ~2011
185302257713706045154311 ~2011
1853154045744475697096912 ~2014
185322947513706458950311 ~2011
185347439393706948787911 ~2011
185355167393707103347911 ~2011
1853595259714828762077712 ~2013
1853678008114829424064912 ~2013
185371450313707429006311 ~2011
1853723455711122340734312 ~2012
185403264593708065291911 ~2011
185405341793708106835911 ~2011
1854089584714832716677712 ~2013
Exponent Prime Factor Dig. Year
185409214913708184298311 ~2011
185410750433708215008711 ~2011
1854119279311124715675912 ~2012
185418117593708362351911 ~2011
185451569513709031390311 ~2011
1854543015729672688251312 ~2013
185460113033709202260711 ~2011
1854626789311127760735912 ~2012
185467216313709344326311 ~2011
185474629193709492583911 ~2011
1854813347311128880083912 ~2012
1855048181311130289087912 ~2012
1855062247711130373486312 ~2012
185507817833710156356711 ~2011
1855149166714841193333712 ~2013
1855213494718552134947112 ~2013
185522629313710452586311 ~2011
1855478473711132870842312 ~2012
185553168833711063376711 ~2011
1855554144111133324864712 ~2012
1855582195114844657560912 ~2013
185563560113711271202311 ~2011
1855806846729692909547312 ~2013
185587886633711757732711 ~2011
185593455833711869116711 ~2011
Home
4.724.182 digits
e-mail
25-04-13