Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
29925109885159850219770312 ~2021
29932726009159865452018312 ~2021
29933365730359866731460712 ~2021
2993424302296405...06900714 2025
29939269633159878539266312 ~2021
29939936065159879872130312 ~2021
29945918738359891837476712 ~2021
29947215761959894431523912 ~2021
2994744115211437...75300914 2025
29948304410359896608820712 ~2021
29956768025959913536051912 ~2021
2995788199011653...58535315 2024
29958765257959917530515912 ~2021
29963120479159926240958312 ~2021
29965776895159931553790312 ~2021
29973641671159947283342312 ~2021
29976293627959952587255912 ~2021
29978638369159957276738312 ~2021
29982648950359965297900712 ~2021
29983325701159966651402312 ~2021
29984624437159969248874312 ~2021
29985726841159971453682312 ~2021
29989547213959979094427912 ~2021
2999233381193461...18932715 2023
29992899277159985798554312 ~2021
Exponent Prime Factor Dig. Year
29995977560359991955120712 ~2021
29997813869959995627739912 ~2021
29998819109959997638219912 ~2021
29998835237959997670475912 ~2021
29999130395959998260791912 ~2021
29999621209159999242418312 ~2021
30005283833960010567667912 ~2021
30007419835160014839670312 ~2021
3001372850872401...80696114 2024
30014271379160028542758312 ~2021
30015982123160031964246312 ~2021
30020437271960040874543912 ~2021
30021207392360042414784712 ~2021
30023882192360047764384712 ~2021
3002685147612342...15135914 2024
30028556353160057112706312 ~2021
30029636429960059272859912 ~2021
30034081391960068162783912 ~2021
30034793324360069586648712 ~2021
30038160697160076321394312 ~2021
30039330061160078660122312 ~2021
30039842315960079684631912 ~2021
30044615221160089230442312 ~2021
30044965931960089931863912 ~2021
30049356044360098712088712 ~2021
Exponent Prime Factor Dig. Year
3004991541676310...37507114 2024
30050224409960100448819912 ~2021
30051806900360103613800712 ~2021
30053681045960107362091912 ~2021
3005383592633426...95598314 2024
30055514450360111028900712 ~2021
30056019116360112038232712 ~2021
30057414731960114829463912 ~2021
30057781195160115562390312 ~2021
30060076813160120153626312 ~2021
30060414938360120829876712 ~2021
30063031778360126063556712 ~2021
30065990879960131981759912 ~2021
30066481663160132963326312 ~2021
30072929383160145858766312 ~2021
30073954303160147908606312 ~2021
30077678174360155356348712 ~2021
30078624133160157248266312 ~2021
30084281737160168563474312 ~2021
30092268011960184536023912 ~2021
3010146382093371...47940914 2024
30104013829160208027658312 ~2021
30106426511960212853023912 ~2021
3010677631332306...55987915 2023
30110795777960221591555912 ~2021
Exponent Prime Factor Dig. Year
30122241625160244483250312 ~2021
30122931251960245862503912 ~2021
30125905529960251811059912 ~2021
3012596151171705...15622315 2023
30128348443160256696886312 ~2021
30128371253960256742507912 ~2021
30129883111160259766222312 ~2021
30131256017960262512035912 ~2021
3013358005691293...62944717 2023
30134380055960268760111912 ~2021
3013573722971585...82822315 2025
30146319539960292639079912 ~2021
30149303216360298606432712 ~2021
30149519639960299039279912 ~2021
30149656279160299312558312 ~2021
30151981112360303962224712 ~2021
30152211776360304423552712 ~2021
30152624528360305249056712 ~2021
30153381049160306762098312 ~2021
30155527561160311055122312 ~2021
3015638080331007...88302315 2023
30156628421960313256843912 ~2021
30160202009960320404019912 ~2021
30160568615960321137231912 ~2021
30161382007160322764014312 ~2021
Home
4.724.182 digits
e-mail
25-04-13