Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
4265337991942653379919112 ~2016
426573327598531466551911 ~2014
4265808511759721319163912 ~2016
426596960638531939212711 ~2014
426619167118532383342311 ~2014
4266364903134130919224912 ~2016
4266695095134133560760912 ~2016
426686955833909...93144715 2024
426720116638534402332711 ~2014
426784553998535691079911 ~2014
426789813118535796262311 ~2014
4267974956934143799655312 ~2016
426798079318535961586311 ~2014
4268095387734144763101712 ~2016
426810345598536206911911 ~2014
426812671438536253428711 ~2014
4268463958368295423332912 ~2016
426850500718537010014311 ~2014
426852204718537044094311 ~2014
426937090318538741806311 ~2014
426946580038538931600711 ~2014
426983004718539660094311 ~2014
4269840419325619042515912 ~2015
426987958318539759166311 ~2014
426994893598539897871911 ~2014
Exponent Prime Factor Dig. Year
4269985306734159882453712 ~2016
427010486998540209739911 ~2014
427021066318540421326311 ~2014
427038205918540764118311 ~2014
427041706438540834128711 ~2014
427058990638541179812711 ~2014
427068541198541370823911 ~2014
4270772674134166181392912 ~2016
4270844068125625064408712 ~2015
427094356798541887135911 ~2014
427108817998542176359911 ~2014
4271128939134169031512912 ~2016
4271153361142711533611112 ~2016
427127971918542559438311 ~2014
427146892918542937858311 ~2014
427227536638544550732711 ~2014
427245744078794...59368915 2024
427249965718544999314311 ~2014
427280196838545603936711 ~2014
427282194598545643891911 ~2014
427291745038545834900711 ~2014
427295289238545905784711 ~2014
427311834718546236694311 ~2014
4273144319325638865915912 ~2015
4273500673759829009431912 ~2016
Exponent Prime Factor Dig. Year
427369826998547396539911 ~2014
427397917198547958343911 ~2014
427421443318548428866311 ~2014
4274217449325645304695912 ~2015
427450665311581...61647114 2023
427454367598549087351911 ~2014
4274627545734197020365712 ~2016
427487758198549755163911 ~2014
427504453198550089063911 ~2014
427513996438550279928711 ~2014
427552028638551040572711 ~2014
427554246118551084922311 ~2014
427576782598551535651911 ~2014
427621622038552432440711 ~2014
427643737798552874755911 ~2014
427650533998553010679911 ~2014
4276676443725660058662312 ~2015
427691130838553822616711 ~2014
427695274318553905486311 ~2014
427708827238554176544711 ~2014
427713423718554268474311 ~2014
4277309755325663858531912 ~2015
427734591718554691834311 ~2014
427752336598555046731911 ~2014
427770078598555401571911 ~2014
Exponent Prime Factor Dig. Year
4277819322168445109153712 ~2016
4277866649325667199895912 ~2015
427846618318556932366311 ~2014
427894811038557896220711 ~2014
4279488417725676930506312 ~2015
427979070012388...10655914 2024
427982883718559657674311 ~2014
427993584118559871682311 ~2014
4280023549368480376788912 ~2016
4280058466125680350796712 ~2015
428010593038560211860711 ~2014
428026161238560523224711 ~2014
428069821918561396438311 ~2014
428078585038561571700711 ~2014
428089538398561790767911 ~2014
428111394118562227882311 ~2014
428127294238562545884711 ~2014
428151115438563022308711 ~2014
4281512131134252097048912 ~2016
428182507438563650148711 ~2014
428188413118563768262311 ~2014
428200718638564014372711 ~2014
4282017507168512280113712 ~2016
428217351118564347022311 ~2014
4282278140934258225127312 ~2016
Home
5.142.307 digits
e-mail
25-10-26