Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
18640913827137281827654312 ~2019
18641755853937283511707912 ~2019
18643505263137287010526312 ~2019
18643997323137287994646312 ~2019
18644666906337289333812712 ~2019
18646350247137292700494312 ~2019
18647732192337295464384712 ~2019
18649014029937298028059912 ~2019
18649549529937299099059912 ~2019
18653857633137307715266312 ~2019
18654264074337308528148712 ~2019
18654490361937308980723912 ~2019
18662125553937324251107912 ~2019
18662919475137325838950312 ~2019
18663794869137327589738312 ~2019
18666357518337332715036712 ~2019
18667747934337335495868712 ~2019
18670944845937341889691912 ~2019
18672171143937344342287912 ~2019
18672465007137344930014312 ~2019
18672951905937345903811912 ~2019
18674270851137348541702312 ~2019
1867450695592278...48619914 2024
18677249989137354499978312 ~2019
18679546985937359093971912 ~2019
Exponent Prime Factor Dig. Year
18679680011937359360023912 ~2019
18679990880337359981760712 ~2019
18681289871937362579743912 ~2019
18681527576337363055152712 ~2019
18681570011937363140023912 ~2019
18681948608337363897216712 ~2019
18684464995137368929990312 ~2019
18685006723137370013446312 ~2019
18685277000337370554000712 ~2019
18686322434337372644868712 ~2019
18688017937137376035874312 ~2019
18688760687937377521375912 ~2019
18689342273937378684547912 ~2019
18689581292337379162584712 ~2019
18690412061937380824123912 ~2019
18696492326337392984652712 ~2019
18697017787137394035574312 ~2019
18698424503937396849007912 ~2019
18698457788337396915576712 ~2019
18700392199137400784398312 ~2019
18701574983937403149967912 ~2019
18702804433137405608866312 ~2019
1870392896873927...83427114 2023
1870644977991422...26799916 2025
18707392400337414784800712 ~2019
Exponent Prime Factor Dig. Year
18709997252337419994504712 ~2019
18712762568337425525136712 ~2019
18715219232337430438464712 ~2019
18716009663937432019327912 ~2019
18716188529937432377059912 ~2019
18716279234337432558468712 ~2019
18717466783137434933566312 ~2019
18717592532337435185064712 ~2019
18717708989937435417979912 ~2019
18718867301937437734603912 ~2019
18721026163137442052326312 ~2019
18724975622337449951244712 ~2019
18726402227937452804455912 ~2019
18726895430337453790860712 ~2019
18731279465937462558931912 ~2019
18732000637137464001274312 ~2019
18735267067137470534134312 ~2019
18736031156337472062312712 ~2019
18736675682337473351364712 ~2019
18737340355137474680710312 ~2019
18737697956337475395912712 ~2019
18737913014337475826028712 ~2019
18739128308337478256616712 ~2019
18741087068337482174136712 ~2019
18743586479937487172959912 ~2019
Exponent Prime Factor Dig. Year
18743771168337487542336712 ~2019
18744018713937488037427912 ~2019
18744695227137489390454312 ~2019
18744808175937489616351912 ~2019
18746214608337492429216712 ~2019
18747598997937495197995912 ~2019
18748939417137497878834312 ~2019
18753302761137506605522312 ~2019
18754845791937509691583912 ~2019
18757177814337514355628712 ~2019
18757983965937515967931912 ~2019
18758733757137517467514312 ~2019
18758771705937517543411912 ~2019
18764754673137529509346312 ~2019
18765045848337530091696712 ~2019
18766157660337532315320712 ~2019
18771017341137542034682312 ~2019
18773909054337547818108712 ~2019
18775019120337550038240712 ~2019
18775746194337551492388712 ~2019
18775850345937551700691912 ~2019
18776866939137553733878312 ~2019
18778691947137557383894312 ~2019
18780156941937560313883912 ~2019
18783187093137566374186312 ~2019
Home
4.724.182 digits
e-mail
25-04-13