Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
12170189933924340379867912 ~2018
12170691517124341383034312 ~2018
12171674425124343348850312 ~2018
12171678617373030071703912 ~2019
12171768175124343536350312 ~2018
12172115087924344230175912 ~2018
12174921062324349842124712 ~2018
12176046673124352093346312 ~2018
12176368256324352736512712 ~2018
1217751855139133...13475114 2025
12177858077924355716155912 ~2018
12178100456324356200912712 ~2018
12178715165924357430331912 ~2018
12178774772324357549544712 ~2018
12179578867124359157734312 ~2018
12179622386324359244772712 ~2018
12179923861124359847722312 ~2018
12180625225773083751354312 ~2019
12181222187924362444375912 ~2018
12181223819924362447639912 ~2018
12181983404324363966808712 ~2018
12182724137924365448275912 ~2018
12184059775124368119550312 ~2018
12184273057124368546114312 ~2018
12185043983924370087967912 ~2018
Exponent Prime Factor Dig. Year
12185380226324370760452712 ~2018
12186408058173118448348712 ~2019
12186633635924373267271912 ~2018
12186878989124373757978312 ~2018
1218713637011423...80276915 2025
12187310894324374621788712 ~2018
12187491773924374983547912 ~2018
12188885857124377771714312 ~2018
12189292987773135757926312 ~2019
12189636925124379273850312 ~2018
12190801417773144808506312 ~2019
12190964984324381929968712 ~2018
12191491520324382983040712 ~2018
12191738304173150429824712 ~2019
12191772413924383544827912 ~2018
12192098915924384197831912 ~2018
12192307063124384614126312 ~2018
12192990953924385981907912 ~2018
12193394497124386788994312 ~2018
12195503702324391007404712 ~2018
12195529513124391059026312 ~2018
1219588241712268...29580714 2025
1219616187491307...29892915 2024
12196199444324392398888712 ~2018
12197672316173186033896712 ~2019
Exponent Prime Factor Dig. Year
12198824041124397648082312 ~2018
12199077961124398155922312 ~2018
12199140635924398281271912 ~2018
12199234526324398469052712 ~2018
12199519914173197119484712 ~2019
12199788427124399576854312 ~2018
12199843106324399686212712 ~2018
12200674499924401348999912 ~2018
12202023410324404046820712 ~2018
12202038626324404077252712 ~2018
12202241084324404482168712 ~2018
12202334630324404669260712 ~2018
12202589954324405179908712 ~2018
12203478323924406956647912 ~2018
12203741653124407483306312 ~2018
12205477217924410954435912 ~2018
1220563775332636...54712914 2024
12205825985924411651971912 ~2018
12206072762324412145524712 ~2018
12206172392324412344784712 ~2018
12207155664173242933984712 ~2019
12207591089924415182179912 ~2018
12207838542173247031252712 ~2019
12208148543924416297087912 ~2018
12208468657124416937314312 ~2018
Exponent Prime Factor Dig. Year
12208968356324417936712712 ~2018
12209088787124418177574312 ~2018
12209677103924419354207912 ~2018
12209817381773258904290312 ~2019
12210281413124420562826312 ~2018
12210292739924420585479912 ~2018
12210498803924420997607912 ~2018
12210699806324421399612712 ~2018
12211745209124423490418312 ~2018
12211925795924423851591912 ~2018
12212390944173274345664712 ~2019
12213290771924426581543912 ~2018
12213562133924427124267912 ~2018
12213892915373283357491912 ~2019
12214047176324428094352712 ~2018
12214482151124428964302312 ~2018
12214686877124429373754312 ~2018
12217768025924435536051912 ~2018
12219304970324438609940712 ~2018
12219586100324439172200712 ~2018
12219754673924439509347912 ~2018
12219870031124439740062312 ~2018
12222132947924444265895912 ~2018
12222722273924445444547912 ~2018
12224613980324449227960712 ~2018
Home
4.888.230 digits
e-mail
25-06-29