Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
29500038439159000076878312 ~2021
29502254195959004508391912 ~2021
29502579715159005159430312 ~2021
29504792377159009584754312 ~2021
29504885972359009771944712 ~2021
2950533005832419...64780714 2024
2950584668776314...91167914 2023
29506605815959013211631912 ~2021
2950866547915016...31447114 2023
29509767245959019534491912 ~2021
2951048837271416...41889714 2024
2951241315592360...52472114 2024
29512844521159025689042312 ~2021
29512877225959025754451912 ~2021
2951361673072656...05763114 2024
29514246758359028493516712 ~2021
29520374972359040749944712 ~2021
29523437336359046874672712 ~2021
29531074249159062148498312 ~2021
29532123785959064247571912 ~2021
29535273302359070546604712 ~2021
29536097179159072194358312 ~2021
2953753686372835...38915314 2024
29547196967959094393935912 ~2021
29549179967959098359935912 ~2021
Exponent Prime Factor Dig. Year
29552671063159105342126312 ~2021
29553056533159106113066312 ~2021
29553703370359107406740712 ~2021
29554029611959108059223912 ~2021
29557373053159114746106312 ~2021
29559312806359118625612712 ~2021
29560529015959121058031912 ~2021
29564587151959129174303912 ~2021
29566377659959132755319912 ~2021
29569357249159138714498312 ~2021
29573019133159146038266312 ~2021
29573449795159146899590312 ~2021
29577718697959155437395912 ~2021
29581669171159163338342312 ~2021
29583172627159166345254312 ~2021
2958340628996449...71198314 2023
29583512869159167025738312 ~2021
2958400043812366...35048114 2024
2958553502517461...33302315 2023
29587625876359175251752712 ~2021
2959173619079291...63879914 2023
29592043832359184087664712 ~2021
2959236437393077...94885714 2024
29593385228359186770456712 ~2021
29594616391159189232782312 ~2021
Exponent Prime Factor Dig. Year
29601771955159203543910312 ~2021
2960601274271717...39076714 2024
29611866251959223732503912 ~2021
29611979369959223958739912 ~2021
29612133239959224266479912 ~2021
29620425644359240851288712 ~2021
29620538423959241076847912 ~2021
2962677714171587...47951315 2025
29627352134359254704268712 ~2021
2963194991212133...93671314 2024
29637104995159274209990312 ~2021
29637633991159275267982312 ~2021
29638147091959276294183912 ~2021
29638891043959277782087912 ~2021
2963974729092786...45344714 2024
29640840811159281681622312 ~2021
2964285772431956...09803914 2024
29646247520359292495040712 ~2021
29650889468359301778936712 ~2021
2965125871211132...28022315 2023
29651577131959303154263912 ~2021
29663732629159327465258312 ~2021
29665075583959330151167912 ~2021
29666749939159333499878312 ~2021
29668663448359337326896712 ~2021
Exponent Prime Factor Dig. Year
29675306743159350613486312 ~2021
29675978168359351956336712 ~2021
29678126000359356252000712 ~2021
29679682736359359365472712 ~2021
29680369103959360738207912 ~2021
29684338952359368677904712 ~2021
29685384133159370768266312 ~2021
29688928796359377857592712 ~2021
2969610271332044...83783916 2023
29696824526359393649052712 ~2021
29697013613959394027227912 ~2021
29703313907959406627815912 ~2021
29703456191959406912383912 ~2021
29703897781159407795562312 ~2021
29709995624359419991248712 ~2021
29713081868359426163736712 ~2021
29714148643159428297286312 ~2021
29714371121959428742243912 ~2021
29716506313159433012626312 ~2021
29719143257959438286515912 ~2021
29719486867159438973734312 ~2021
29719648892359439297784712 ~2021
29721150599959442301199912 ~2021
2972364488711569...00388915 2025
29725037419159450074838312 ~2021
Home
4.724.182 digits
e-mail
25-04-13