Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
12044001373124088002746312 ~2018
12044960027924089920055912 ~2018
12045203891924090407783912 ~2018
12045890867372275345203912 ~2019
12046038350324092076700712 ~2018
12046288009124092576018312 ~2018
12046374517372278247103912 ~2019
12047631661772285789970312 ~2019
12048995161124097990322312 ~2018
12050048447924100096895912 ~2018
12050147114324100294228712 ~2018
12050184586172301107516712 ~2019
1205079263597447...48986314 2025
12051870979772311225878312 ~2019
12053028149924106056299912 ~2018
12053528838172321173028712 ~2019
12053637379124107274758312 ~2018
12054042391124108084782312 ~2018
12054196013924108392027912 ~2018
12054532841924109065683912 ~2018
12054570487124109140974312 ~2018
12055851241124111702482312 ~2018
12057573253124115146506312 ~2018
12057804949124115609898312 ~2018
12057926815772347560894312 ~2019
Exponent Prime Factor Dig. Year
12059556073124119112146312 ~2018
12060347669924120695339912 ~2018
12060989915924121979831912 ~2018
12061348811924122697623912 ~2018
12063200630324126401260712 ~2018
12063612903772381677422312 ~2019
12064819394324129638788712 ~2018
12065219053124130438106312 ~2018
12066785915924133571831912 ~2018
12067043617124134087234312 ~2018
12069232961924138465923912 ~2018
12069504559124139009118312 ~2018
12069728851372418373107912 ~2019
12070585286324141170572712 ~2018
12070874936324141749872712 ~2018
1207138582636880...20991114 2024
12071458559924142917119912 ~2018
12072051827924144103655912 ~2018
12072196316324144392632712 ~2018
12072971753924145943507912 ~2018
12073396733924146793467912 ~2018
12073574309924147148619912 ~2018
12073760135924147520271912 ~2018
12075418465124150836930312 ~2018
12075452747924150905495912 ~2018
Exponent Prime Factor Dig. Year
12075792500324151585000712 ~2018
12075908252324151816504712 ~2018
12076450046324152900092712 ~2018
12076601317124153202634312 ~2018
12076994210324153988420712 ~2018
12077764399124155528798312 ~2018
1207783408434855...01888714 2023
12079740469124159480938312 ~2018
12082456231124164912462312 ~2018
12082546730324165093460712 ~2018
12082825061924165650123912 ~2018
12083909117924167818235912 ~2018
12084226514324168453028712 ~2018
12086169152324172338304712 ~2018
12086170574324172341148712 ~2018
12086190033772517140202312 ~2019
12086465753372518794519912 ~2019
12088118609924176237219912 ~2018
12089412965924178825931912 ~2018
12090012311924180024623912 ~2018
12090175268324180350536712 ~2018
12091834537124183669074312 ~2018
12091891250324183782500712 ~2018
12092021783924184043567912 ~2018
12092507240324185014480712 ~2018
Exponent Prime Factor Dig. Year
12092935877924185871755912 ~2018
1209299059331644...20688914 2024
12094954066172569724396712 ~2019
12095157283124190314566312 ~2018
12095202353924190404707912 ~2018
12095467879124190935758312 ~2018
12095935664324191871328712 ~2018
12095992694324191985388712 ~2018
12096600597772579603586312 ~2019
12097217528324194435056712 ~2018
12098686837124197373674312 ~2018
12099741263924199482527912 ~2018
12099862859924199725719912 ~2018
1210077895573388...07596114 2025
12101017297124202034594312 ~2018
12101017581772606105490312 ~2019
12102022439924204044879912 ~2018
12102071976172612431856712 ~2019
12103386668324206773336712 ~2018
12103531039124207062078312 ~2018
12104933171924209866343912 ~2018
12106324163924212648327912 ~2018
12106679468324213358936712 ~2018
12106756376324213512752712 ~2018
12107280335924214560671912 ~2018
Home
4.888.230 digits
e-mail
25-06-29