Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
7988047218147928283308712 ~2017
7988433484163907467872912 ~2018
7989377479115978754958312 ~2016
7989744085115979488170312 ~2016
7990436807915980873615912 ~2016
7991171125115982342250312 ~2016
7991845424963934763399312 ~2018
7992261736379922617363112 ~2018
7992403489115984806978312 ~2016
7993086731915986173463912 ~2016
7993747489115987494978312 ~2016
7994944280315989888560712 ~2016
7994967584315989935168712 ~2016
7995570098315991140196712 ~2016
7995600758315991201516712 ~2016
7996097815115992195630312 ~2016
7996997281115993994562312 ~2016
7997396203115994792406312 ~2016
7997417563747984505382312 ~2017
7998344333915996688667912 ~2016
7998385451915996770903912 ~2016
7998446174315996892348712 ~2016
7999011005915998022011912 ~2016
7999473217115998946434312 ~2016
7999581148147997486888712 ~2017
Exponent Prime Factor Dig. Year
7999893881915999787763912 ~2016
8001099691764008797533712 ~2018
8001271297116002542594312 ~2016
8001571333116003142666312 ~2016
8001611695116003223390312 ~2016
8001628864148009773184712 ~2017
8001801277116003602554312 ~2016
8002039513116004079026312 ~2016
8002207471116004414942312 ~2016
8002399439916004798879912 ~2016
8002595251116005190502312 ~2016
8002644251916005288503912 ~2016
8002825093116005650186312 ~2016
8003448380316006896760712 ~2016
8003489033916006978067912 ~2016
8003827231116007654462312 ~2016
8004419821116008839642312 ~2016
800470196992516...93365715 2025
8004757823916009515647912 ~2016
8004981113916009962227912 ~2016
8005052792316010105584712 ~2016
8005553303916011106607912 ~2016
800572528313458...22299314 2023
8006465821748038794930312 ~2017
8006577332316013154664712 ~2016
Exponent Prime Factor Dig. Year
8006941033116013882066312 ~2016
8007443785116014887570312 ~2016
8007510488316015020976712 ~2016
8007803233748046819402312 ~2017
8008411262316016822524712 ~2016
8009830451916019660903912 ~2016
8010001189116020002378312 ~2016
8010687168148064123008712 ~2017
8010876023916021752047912 ~2016
801098806738892...54703114 2025
8011018464148066110784712 ~2017
8011835156316023670312712 ~2016
8012719200148076315200712 ~2017
8013317972316026635944712 ~2016
8013397475916026794951912 ~2016
8013460253916026920507912 ~2016
8013673031916027346063912 ~2016
8014758401916029516803912 ~2016
8015097973116030195946312 ~2016
8015967275916031934551912 ~2016
8015990564316031981128712 ~2016
8016912499116033824998312 ~2016
8017124443116034248886312 ~2016
8017321597116034643194312 ~2016
8018099057916036198115912 ~2016
Exponent Prime Factor Dig. Year
8018322983916036645967912 ~2016
8018977603116037955206312 ~2016
8019956137116039912274312 ~2016
8020722860316041445720712 ~2016
8020827379116041654758312 ~2016
8021060225916042120451912 ~2016
8021169569916042339139912 ~2016
8021565974316043131948712 ~2016
8022221968164177775744912 ~2018
8022417383916044834767912 ~2016
8022491066316044982132712 ~2016
8022504326316045008652712 ~2016
8022782053116045564106312 ~2016
8022880520316045761040712 ~2016
8023000613964184004911312 ~2018
8023098559116046197118312 ~2016
8023478189916046956379912 ~2016
8023688900316047377800712 ~2016
8023733359116047466718312 ~2016
8024327470148145964820712 ~2017
8024969921964199759375312 ~2018
8025077195916050154391912 ~2016
8025122012316050244024712 ~2016
8025404900316050809800712 ~2016
8025745229348154471375912 ~2017
Home
4.888.230 digits
e-mail
25-06-29