Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
10708989295121417978590312 ~2017
10709044645121418089290312 ~2017
10709317435121418634870312 ~2017
10710495287921420990575912 ~2017
10711932554321423865108712 ~2017
10712227907921424455815912 ~2017
10713251456321426502912712 ~2017
10713278933921426557867912 ~2017
10713357386321426714772712 ~2017
10713368687921426737375912 ~2017
10714236389921428472779912 ~2017
10714361155121428722310312 ~2017
10714940546321429881092712 ~2017
10715459018321430918036712 ~2017
10715689379921431378759912 ~2017
10715964951764295789710312 ~2018
1071668931673515...95877714 2023
10717161932321434323864712 ~2017
10717619785364305718711912 ~2018
10719756528164318539168712 ~2018
10719950972321439901944712 ~2017
10720609376321441218752712 ~2017
10721947750164331686500712 ~2018
10722035740164332214440712 ~2018
10723783669121447567338312 ~2017
Exponent Prime Factor Dig. Year
10724343620321448687240712 ~2017
10726440613121452881226312 ~2017
10726913839121453827678312 ~2017
1072709925594119...14265714 2023
10728491909921456983819912 ~2017
10728559616321457119232712 ~2017
10729577741921459155483912 ~2017
10730046461921460092923912 ~2017
10731529537121463059074312 ~2017
10731707150321463414300712 ~2017
10732411190321464822380712 ~2017
10732652726321465305452712 ~2017
10733109133121466218266312 ~2017
10733421863364400531179912 ~2018
10733615756321467231512712 ~2017
10734279151121468558302312 ~2017
10735497157121470994314312 ~2017
10735523569364413141415912 ~2018
10736457314321472914628712 ~2017
10737035653121474071306312 ~2017
10737553927764425323566312 ~2018
1073791920499857...30098314 2025
10739786681921479573363912 ~2017
10740137210321480274420712 ~2017
10741319102321482638204712 ~2017
Exponent Prime Factor Dig. Year
10741508813921483017627912 ~2017
10741938212321483876424712 ~2017
10742191333121484382666312 ~2017
10742380343921484760687912 ~2017
10742736960164456421760712 ~2018
10743740246321487480492712 ~2017
10743828866321487657732712 ~2017
10743983696321487967392712 ~2017
10744210823921488421647912 ~2017
10744953139121489906278312 ~2017
10745338117764472028706312 ~2018
1074545607012578...56824114 2024
10746009740321492019480712 ~2017
10746247075764477482454312 ~2018
10750094887121500189774312 ~2017
10750141393121500282786312 ~2017
10752082949921504165899912 ~2017
10752176581121504353162312 ~2017
10752598235921505196471912 ~2017
10753105285121506210570312 ~2017
10753212613364519275679912 ~2018
10753968659921507937319912 ~2017
10756739677121513479354312 ~2017
10756934095364541604571912 ~2018
10758187421921516374843912 ~2017
Exponent Prime Factor Dig. Year
10758558863921517117727912 ~2017
10759456278164556737668712 ~2018
10760259469121520518938312 ~2017
10760503291121521006582312 ~2017
10760692381121521384762312 ~2017
10761143063921522286127912 ~2017
10761637271921523274543912 ~2017
10762349778164574098668712 ~2018
10762606592321525213184712 ~2017
10763043875921526087751912 ~2017
10763073245921526146491912 ~2017
10765743599921531487199912 ~2017
10766080580321532161160712 ~2017
10766539169921533078339912 ~2017
10767243218321534486436712 ~2017
10768490537921536981075912 ~2017
10768548092321537096184712 ~2017
1076863080113962...34804914 2023
10768714310321537428620712 ~2017
10768951604321537903208712 ~2017
10768993361921537986723912 ~2017
10769019085121538038170312 ~2017
10769463122321538926244712 ~2017
10771038853121542077706312 ~2017
10771195556321542391112712 ~2017
Home
4.888.230 digits
e-mail
25-06-29