Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
10772508212321545016424712 ~2017
10772656895921545313791912 ~2017
10773308251121546616502312 ~2017
10773909394164643456364712 ~2018
10774654345121549308690312 ~2017
10775771598164654629588712 ~2018
10776219607121552439214312 ~2017
10776416177921552832355912 ~2017
10776499267764658995606312 ~2018
10776667259921553334519912 ~2017
10776849668321553699336712 ~2017
10777174489121554348978312 ~2017
10777781792321555563584712 ~2017
10777997647121555995294312 ~2017
10778278951121556557902312 ~2017
10779421208321558842416712 ~2017
10780108291364680649747912 ~2018
10780152865121560305730312 ~2017
10780552592321561105184712 ~2017
10780577552321561155104712 ~2017
10780594505921561189011912 ~2017
10780636327121561272654312 ~2017
10780937917764685627506312 ~2018
10781401712321562803424712 ~2017
10783000415364698002491912 ~2018
Exponent Prime Factor Dig. Year
10784234257121568468514312 ~2017
10784645120321569290240712 ~2017
1078466820893451...26848114 2024
10785517279121571034558312 ~2017
10786180963364717085779912 ~2018
10786345418321572690836712 ~2017
10787066521121574133042312 ~2017
10787070679121574141358312 ~2017
10787078737121574157474312 ~2017
10787754535121575509070312 ~2017
10787907229121575814458312 ~2017
10788906805121577813610312 ~2017
10788933505121577867010312 ~2017
10789566169121579132338312 ~2017
10789894445921579788891912 ~2017
10789983563921579967127912 ~2017
10790115349764740692098312 ~2018
10791001549121582003098312 ~2017
10792112000321584224000712 ~2017
10792637875121585275750312 ~2017
10793014172321586028344712 ~2017
10793970769121587941538312 ~2017
10794620678321589241356712 ~2017
10794736147121589472294312 ~2017
10795634054321591268108712 ~2017
Exponent Prime Factor Dig. Year
10796361010164778166060712 ~2018
1079641542473562...90151114 2023
10797582293921595164587912 ~2017
10799180967764795085806312 ~2018
10799183029121598366058312 ~2017
10800122162321600244324712 ~2017
10800310591121600621182312 ~2017
10800584803121601169606312 ~2017
10801498096164808988576712 ~2018
10802284862321604569724712 ~2017
10802397109121604794218312 ~2017
1080253633872482...06332715 2023
10803014420321606028840712 ~2017
10803084056321606168112712 ~2017
10803288643121606577286312 ~2017
10803910080164823460480712 ~2018
10804197833921608395667912 ~2017
10804288994321608577988712 ~2017
10804796395364828778371912 ~2018
10806069824321612139648712 ~2017
10806819463121613638926312 ~2017
10807031828321614063656712 ~2017
10807177662164843065972712 ~2018
10808467555121616935110312 ~2017
10808572127921617144255912 ~2017
Exponent Prime Factor Dig. Year
10809298843121618597686312 ~2017
10811268367121622536734312 ~2017
10811614544321623229088712 ~2017
10811924012321623848024712 ~2017
10811952587921623905175912 ~2017
10812394577364874367463912 ~2018
10812617893121625235786312 ~2017
10812758426321625516852712 ~2017
10813622072321627244144712 ~2017
10814685517121629371034312 ~2017
10815969221921631938443912 ~2017
10817063359121634126718312 ~2017
10817457380321634914760712 ~2017
10818616795121637233590312 ~2017
10819518578321639037156712 ~2017
10819541983121639083966312 ~2017
1082019869572661...79142314 2024
10820552516321641105032712 ~2017
10821155522321642311044712 ~2017
10821279932321642559864712 ~2017
10821842060321643684120712 ~2017
1082199087014309...29122316 2023
10822073029121644146058312 ~2017
10822478519921644957039912 ~2017
10822540123364935240739912 ~2018
Home
4.888.230 digits
e-mail
25-06-29