Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
17276264561934552529123912 ~2019
17277601952334555203904712 ~2019
17278632065934557264131912 ~2019
17279316367134558632734312 ~2019
17280387245934560774491912 ~2019
17280715496334561430992712 ~2019
17283335855934566671711912 ~2019
1728609059931360...97689716 2024
17286526181934573052363912 ~2019
17286893240334573786480712 ~2019
17286971459934573942919912 ~2019
17287706695134575413390312 ~2019
17288085302334576170604712 ~2019
1728854178972984...29022315 2023
17289665651934579331303912 ~2019
17289921613134579843226312 ~2019
17295113633934590227267912 ~2019
17296565126334593130252712 ~2019
17297369335134594738670312 ~2019
17299275296334598550592712 ~2019
17300250349134600500698312 ~2019
17301878215134603756430312 ~2019
17302692433134605384866312 ~2019
17303122225134606244450312 ~2019
17304198566334608397132712 ~2019
Exponent Prime Factor Dig. Year
17306357762334612715524712 ~2019
17306921995134613843990312 ~2019
17307355208334614710416712 ~2019
17308526761134617053522312 ~2019
17308637600334617275200712 ~2019
1731150468797063...12663314 2023
17311573903134623147806312 ~2019
17313596696334627193392712 ~2019
17314362625134628725250312 ~2019
1731471256733739...14536914 2024
17316574021134633148042312 ~2019
17317393447134634786894312 ~2019
17319034249134638068498312 ~2019
17319103885134638207770312 ~2019
17319208460334638416920712 ~2019
17320384286334640768572712 ~2019
17324649913134649299826312 ~2019
17325476765934650953531912 ~2019
17326708976334653417952712 ~2019
17326824728334653649456712 ~2019
17328326257134656652514312 ~2019
17328373931934656747863912 ~2019
17329521869934659043739912 ~2019
17330471719134660943438312 ~2019
17330638441134661276882312 ~2019
Exponent Prime Factor Dig. Year
1733075368919462...14248714 2023
17331127538334662255076712 ~2019
17331395174334662790348712 ~2019
17331744011934663488023912 ~2019
17332707152334665414304712 ~2019
17333222678334666445356712 ~2019
17333387429934666774859912 ~2019
17333562161934667124323912 ~2019
17333659178334667318356712 ~2019
17335028180334670056360712 ~2019
17336180191134672360382312 ~2019
17337311246334674622492712 ~2019
17340504937134681009874312 ~2019
17341648178334683296356712 ~2019
17342173877934684347755912 ~2019
17344504283934689008567912 ~2019
1734462031698325...52112114 2024
17344853213934689706427912 ~2019
17345242757934690485515912 ~2019
17345701523934691403047912 ~2019
17347766413134695532826312 ~2019
17349931469934699862939912 ~2019
17352030893934704061787912 ~2019
1735319428191055...23395315 2024
17354016026334708032052712 ~2019
Exponent Prime Factor Dig. Year
17354830088334709660176712 ~2019
17355109891134710219782312 ~2019
17355193214334710386428712 ~2019
17355365389134710730778312 ~2019
17360356736334720713472712 ~2019
17362546889934725093779912 ~2019
17363919506334727839012712 ~2019
17363998304334727996608712 ~2019
17364250387134728500774312 ~2019
17365301665134730603330312 ~2019
1736607440031806...37631314 2024
1736627689671587...83583915 2023
17367010910334734021820712 ~2019
17367144728334734289456712 ~2019
17369346065934738692131912 ~2019
17371219316334742438632712 ~2019
17371948931934743897863912 ~2019
17372626094334745252188712 ~2019
17372958080334745916160712 ~2019
17374728533934749457067912 ~2019
17375320669134750641338312 ~2019
17375742613134751485226312 ~2019
17376055517934752111035912 ~2019
17384048893134768097786312 ~2019
17384498293134768996586312 ~2019
Home
4.724.182 digits
e-mail
25-04-13