Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
444623335438892466708711 ~2014
444643476598892869531911 ~2014
4446599222935572793783312 ~2016
444733108318894662166311 ~2014
444738772198894775443911 ~2014
4447467871326684807227912 ~2015
444749036398894980727911 ~2014
444773030638895460612711 ~2014
444786120718895722414311 ~2014
4448082823371169325172912 ~2016
444808311598896166231911 ~2014
4448202552780067645948712 ~2017
444866146438897322928711 ~2014
444886627918897732558311 ~2014
4449295267726695771606312 ~2015
444930719998898614399911 ~2014
4449435247735595481981712 ~2016
444949179598898983591911 ~2014
444956847718899136954311 ~2014
444964136038899282720711 ~2014
444970817038899416340711 ~2014
4449917929726699507578312 ~2015
4450015785771200252571312 ~2016
4450355940744503559407112 ~2016
445049840998900996819911 ~2014
Exponent Prime Factor Dig. Year
445057561318901151226311 ~2014
445067129518901342590311 ~2014
4450698099726704188598312 ~2015
4451018743326706112459912 ~2015
4451155569144511555691112 ~2016
4451191270135609530160912 ~2016
445125465118902509302311 ~2014
445128768838902575376711 ~2014
445135756438902715128711 ~2014
445147048318902940966311 ~2014
445151208838903024176711 ~2014
445187516638903750332711 ~2014
445193003638903860072711 ~2014
445212569998904251399911 ~2014
445222743238904454864711 ~2014
445226838718904536774311 ~2014
445229610718904592214311 ~2014
445252959118905059182311 ~2014
445309965718906199314311 ~2014
4453367356735626938853712 ~2016
445340804998906816099911 ~2014
445350097198907001943911 ~2014
445360834392351...05579314 2024
4453864053726723184322312 ~2015
445409369398908187387911 ~2014
Exponent Prime Factor Dig. Year
445416166438908323328711 ~2014
445417704118908354082311 ~2014
445420317838908406356711 ~2014
445447054318908941086311 ~2014
445457448238909148964711 ~2014
4454607342126727644052712 ~2015
445476732838909534656711 ~2014
445483597318909671946311 ~2014
445489208038909784160711 ~2014
445495957198909919143911 ~2014
4456005846126736035076712 ~2015
4456058220126736349320712 ~2015
445628651038912573020711 ~2014
445667513038913350260711 ~2014
445672221238913444424711 ~2014
445677005638913540112711 ~2014
4456770214735654161717712 ~2016
445707838918914156778311 ~2014
445730766238914615324711 ~2014
4457315728344573157283112 ~2016
445836929998916738599911 ~2014
4458485998135667887984912 ~2016
4458558189144585581891112 ~2016
445857660598917153211911 ~2014
445880681834779...09217714 2023
Exponent Prime Factor Dig. Year
445913087398918261747911 ~2014
445923269038918465380711 ~2014
445926459598918529191911 ~2014
4459755469326758532815912 ~2015
445996783918919935678311 ~2014
446016659398920333187911 ~2014
446039737318920794746311 ~2014
446042820598920856411911 ~2014
4460661865726763971194312 ~2015
4460691268126764147608712 ~2015
446072263438921445268711 ~2014
446075809918921516198311 ~2014
4460784517326764707103912 ~2015
446080591318921611826311 ~2014
446124911518922498230311 ~2014
446189168518923783370311 ~2014
4462558896126775353376712 ~2015
446305972798926119455911 ~2014
4463078950126778473700712 ~2015
446341800238926836004711 ~2014
4463471986735707775893712 ~2016
446350907518927018150311 ~2014
4463652944935709223559312 ~2016
446370607318927412146311 ~2014
446372529238927450584711 ~2014
Home
5.142.307 digits
e-mail
25-10-26