Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
7952870785115905741570312 ~2016
7953235658315906471316712 ~2016
7953907819115907815638312 ~2016
7953950624315907901248712 ~2016
7954002419915908004839912 ~2016
7954477475915908954951912 ~2016
7954839199979548391999112 ~2018
7954843333763638746669712 ~2018
7955345595747732073574312 ~2017
7955755970315911511940712 ~2016
7955904781115911809562312 ~2016
7956624994163652999952912 ~2018
7957059079115914118158312 ~2016
7957104755347742628531912 ~2017
7957983776315915967552712 ~2016
7958190116315916380232712 ~2016
7958192605115916385210312 ~2016
7958334049115916668098312 ~2016
7958486675915916973351912 ~2016
7958533153115917066306312 ~2016
7959238082315918476164712 ~2016
7959746405915919492811912 ~2016
7959856260147759137560712 ~2017
7960197463115920394926312 ~2016
7960210428779602104287112 ~2018
Exponent Prime Factor Dig. Year
7960425923915920851847912 ~2016
7960610060315921220120712 ~2016
7960663817915921327635912 ~2016
7961346107963690768863312 ~2018
7962566438315925132876712 ~2016
7962926402315925852804712 ~2016
7963292057915926584115912 ~2016
7963361471915926722943912 ~2016
7963400450315926800900712 ~2016
7963444609115926889218312 ~2016
7963920403115927840806312 ~2016
7965330013747791980082312 ~2017
7966496509115932993018312 ~2016
7966961417915933922835912 ~2016
7967361866315934723732712 ~2016
7968157563747808945382312 ~2017
7968271853915936543707912 ~2016
7968283583963746268671312 ~2018
7968304981115936609962312 ~2016
7968503054315937006108712 ~2016
7968719138315937438276712 ~2016
796894905895402...61934314 2023
7969085364779690853647112 ~2018
7969903369979699033699112 ~2018
7970365581747822193490312 ~2017
Exponent Prime Factor Dig. Year
7971484658315942969316712 ~2016
7971725011347830350067912 ~2017
7971769872147830619232712 ~2017
7973031593963784252751312 ~2018
7973092861115946185722312 ~2016
7973204063915946408127912 ~2016
7973383136315946766272712 ~2016
7973397503915946795007912 ~2016
7973577622147841465732712 ~2017
7973671064315947342128712 ~2016
7973829619115947659238312 ~2016
7973850274163790802192912 ~2018
7974189025763793512205712 ~2018
7974283361347845700167912 ~2017
7975668919115951337838312 ~2016
7975737755915951475511912 ~2016
7975926895763807415165712 ~2018
7975963113179759631131112 ~2018
7976322535115952645070312 ~2016
7976423036315952846072712 ~2016
7976532105747859192634312 ~2017
7976895992315953791984712 ~2016
7977313135115954626270312 ~2016
7977316208315954632416712 ~2016
7977663452315955326904712 ~2016
Exponent Prime Factor Dig. Year
7978318024147869908144712 ~2017
7978338117747870028706312 ~2017
7978427882315956855764712 ~2016
7978460209115956920418312 ~2016
7978653841115957307682312 ~2016
7979294695115958589390312 ~2016
7979314679915958629359912 ~2016
7979913376763839307013712 ~2018
7980096626315960193252712 ~2016
7980231503915960463007912 ~2016
7980526267115961052534312 ~2016
7980724723115961449446312 ~2016
7981254692315962509384712 ~2016
7982277843747893667062312 ~2017
7982357291915964714583912 ~2016
7983494810315966989620712 ~2016
7983513931115967027862312 ~2016
7984010131115968020262312 ~2016
7984208617115968417234312 ~2016
7984215991347905295947912 ~2017
7984249017747905494106312 ~2017
7984682063915969364127912 ~2016
798626420211581...12015914 2024
7986907417115973814834312 ~2016
7987030046315974060092712 ~2016
Home
4.888.230 digits
e-mail
25-06-29