Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
18253075004336506150008712 ~2019
18253468907936506937815912 ~2019
18253877780336507755560712 ~2019
18255577145936511154291912 ~2019
18256544795936513089591912 ~2019
18256700917136513401834312 ~2019
18256879339136513758678312 ~2019
1825690243019895...17114314 2023
18258019736336516039472712 ~2019
18263650909136527301818312 ~2019
18263891087936527782175912 ~2019
18264009878336528019756712 ~2019
1826599929434274...34866314 2023
18268067455136536134910312 ~2019
18268454651936536909303912 ~2019
18271340311136542680622312 ~2019
18271601081936543202163912 ~2019
18272104141136544208282312 ~2019
18272274182336544548364712 ~2019
18276838937936553677875912 ~2019
18277918016336555836032712 ~2019
18278564381936557128763912 ~2019
18282340340336564680680712 ~2019
1828294489875558...49204914 2024
18284281771136568563542312 ~2019
Exponent Prime Factor Dig. Year
18285244993136570489986312 ~2019
18287753063936575506127912 ~2019
18289227583136578455166312 ~2019
18290374145936580748291912 ~2019
1829376714373475...57303114 2025
18294383605136588767210312 ~2019
18294544477136589088954312 ~2019
18295056637136590113274312 ~2019
18297887651936595775303912 ~2019
18298256423936596512847912 ~2019
18298429715936596859431912 ~2019
18299407921136598815842312 ~2019
18300731611136601463222312 ~2019
18301453178336602906356712 ~2019
18301902841136603805682312 ~2019
18303903692336607807384712 ~2019
18304816375136609632750312 ~2019
1830492973492452...84476714 2024
1830872964192526...90582314 2024
18309703537136619407074312 ~2019
18310101314336620202628712 ~2019
18310790945936621581891912 ~2019
18311780882336623561764712 ~2019
18312848858336625697716712 ~2019
18315455930336630911860712 ~2019
Exponent Prime Factor Dig. Year
18317471449136634942898312 ~2019
18320693243936641386487912 ~2019
18324238961936648477923912 ~2019
18325122272336650244544712 ~2019
18326232284336652464568712 ~2019
18328666921136657333842312 ~2019
18329247761936658495523912 ~2019
18330121622336660243244712 ~2019
18332300923136664601846312 ~2019
18333784405136667568810312 ~2019
18334915820336669831640712 ~2019
18335429729936670859459912 ~2019
18335679128336671358256712 ~2019
18341060303936682120607912 ~2019
18341708047136683416094312 ~2019
18345608707136691217414312 ~2019
1834560963492605...68155914 2024
18345615079136691230158312 ~2019
18346215445136692430890312 ~2019
18346279657136692559314312 ~2019
18347596547936695193095912 ~2019
18350479685936700959371912 ~2019
18351556085936703112171912 ~2019
18352632524336705265048712 ~2019
18352740277136705480554312 ~2019
Exponent Prime Factor Dig. Year
18354117667136708235334312 ~2019
18356616073136713232146312 ~2019
18358139012336716278024712 ~2019
18358841366336717682732712 ~2019
18359154157136718308314312 ~2019
1836060041231762...39580914 2025
18361134967136722269934312 ~2019
18362062598336724125196712 ~2019
18362396731136724793462312 ~2019
18362404922336724809844712 ~2019
18364195943936728391887912 ~2019
18365283467936730566935912 ~2019
1836584412471366...28776915 2023
1836771068293195...58824714 2024
1836995957994445...18335914 2023
18370402661936740805323912 ~2019
18372272756336744545512712 ~2019
18372459841136744919682312 ~2019
18372957026336745914052712 ~2019
18373308569936746617139912 ~2019
18373425866336746851732712 ~2019
18373739483936747478967912 ~2019
18373985792336747971584712 ~2019
18377387852336754775704712 ~2019
18377794058336755588116712 ~2019
Home
4.724.182 digits
e-mail
25-04-13