Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
18140666873936281333747912 ~2019
18142071305936284142611912 ~2019
18143362616336286725232712 ~2019
18146121782336292243564712 ~2019
18149218559936298437119912 ~2019
18150565205936301130411912 ~2019
18150855005936301710011912 ~2019
18151595612336303191224712 ~2019
18152297015936304594031912 ~2019
18152367239936304734479912 ~2019
18152563525136305127050312 ~2019
18154065691136308131382312 ~2019
18155466869936310933739912 ~2019
18155994889136311989778312 ~2019
18156464197136312928394312 ~2019
18156575947136313151894312 ~2019
18156628091936313256183912 ~2019
18160383529136320767058312 ~2019
18162006553136324013106312 ~2019
1816319658472575...57104715 2023
18163595065136327190130312 ~2019
1816362592372869...95944714 2024
18164161645136328323290312 ~2019
18164229949136328459898312 ~2019
18165545089136331090178312 ~2019
Exponent Prime Factor Dig. Year
18165692537936331385075912 ~2019
18166284157136332568314312 ~2019
18167463920336334927840712 ~2019
18169365104336338730208712 ~2019
18169975769936339951539912 ~2019
18170644040336341288080712 ~2019
18170927231936341854463912 ~2019
18171317606336342635212712 ~2019
18171863989136343727978312 ~2019
1817426503332471...44528914 2024
18176196703136352393406312 ~2019
1817647493592908...89744114 2024
18178492771136356985542312 ~2019
18179112781136358225562312 ~2019
18179577463136359154926312 ~2019
18180859969136361719938312 ~2019
18183823657136367647314312 ~2019
18189782381936379564763912 ~2019
18191630591936383261183912 ~2019
18192205961936384411923912 ~2019
18192605927936385211855912 ~2019
1819273945031151...20399116 2025
18194883575936389767151912 ~2019
18196265155136392530310312 ~2019
18196510664336393021328712 ~2019
Exponent Prime Factor Dig. Year
18196592804336393185608712 ~2019
18197901893936395803787912 ~2019
18198514364336397028728712 ~2019
18204222920336408445840712 ~2019
18204266498336408532996712 ~2019
18204337375136408674750312 ~2019
18205568246336411136492712 ~2019
18207751213136415502426312 ~2019
18209074076336418148152712 ~2019
1820961749272512...13992714 2024
18211003415936422006831912 ~2019
18211065025136422130050312 ~2019
18212883635936425767271912 ~2019
18213877289936427754579912 ~2019
18214555567136429111134312 ~2019
18216429992336432859984712 ~2019
1821882631333024...68007914 2024
18219509729936439019459912 ~2019
18219559538336439119076712 ~2019
18219750221936439500443912 ~2019
18219795019136439590038312 ~2019
18219842222336439684444712 ~2019
18220166153936440332307912 ~2019
18220919513936441839027912 ~2019
1822111341072514...50676714 2024
Exponent Prime Factor Dig. Year
18222121033136444242066312 ~2019
18223262533136446525066312 ~2019
18224169710336448339420712 ~2019
18226422596336452845192712 ~2019
18229351808336458703616712 ~2019
18230220133136460440266312 ~2019
18231069014336462138028712 ~2019
18231400694336462801388712 ~2019
1823292307519517...45202314 2023
18234394891136468789782312 ~2019
18236667785936473335571912 ~2019
18237657932336475315864712 ~2019
18239385217136478770434312 ~2019
18240662035136481324070312 ~2019
18241178714336482357428712 ~2019
18241212343136482424686312 ~2019
18243320927936486641855912 ~2019
18244311152336488622304712 ~2019
18247398611936494797223912 ~2019
18249361208336498722416712 ~2019
18250459853936500919707912 ~2019
18250835303936501670607912 ~2019
18251077967936502155935912 ~2019
18251114741936502229483912 ~2019
1825123730473394...38674314 2024
Home
4.724.182 digits
e-mail
25-04-13