Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
11752863257923505726515912 ~2017
11753529131923507058263912 ~2017
11753791495123507582990312 ~2017
11754184745923508369491912 ~2017
11755245212323510490424712 ~2017
11755843709923511687419912 ~2017
11757259045123514518090312 ~2017
11757915889123515831778312 ~2017
11758382323770550293942312 ~2019
11758726075123517452150312 ~2017
11758821019123517642038312 ~2017
11758951003370553706019912 ~2019
11759099423923518198847912 ~2017
11759253563923518507127912 ~2017
11759425297770556551786312 ~2019
11759984327923519968655912 ~2017
11761921019923523842039912 ~2017
11761983179923523966359912 ~2017
11762118644323524237288712 ~2017
11762292494323524584988712 ~2017
11763566717923527133435912 ~2017
11763642236323527284472712 ~2017
11763795776323527591552712 ~2017
11764523528323529047056712 ~2017
11765135113123530270226312 ~2017
Exponent Prime Factor Dig. Year
11765254868323530509736712 ~2017
11765283173923530566347912 ~2017
11765489023370592934139912 ~2019
11765787551923531575103912 ~2017
11767028981370602173887912 ~2019
11767147603370602885619912 ~2019
11767313588323534627176712 ~2017
11767558601923535117203912 ~2017
11770587188323541174376712 ~2017
11772936157370637616943912 ~2019
11773619552323547239104712 ~2017
11773838713123547677426312 ~2017
1177549304171194...44283915 2025
11775961085370655766511912 ~2019
11776114505923552229011912 ~2017
11776123711770656742270312 ~2019
11776339225123552678450312 ~2017
1177729645212635...59799915 2023
11777474401370664846407912 ~2019
11777840747923555681495912 ~2017
11779494167923558988335912 ~2017
11779712593123559425186312 ~2017
11779821277123559642554312 ~2017
11780702630323561405260712 ~2017
11781662089123563324178312 ~2017
Exponent Prime Factor Dig. Year
11781675115370690050691912 ~2019
11781711367123563422734312 ~2017
11781752239123563504478312 ~2017
11783797824170702786944712 ~2019
11783947556323567895112712 ~2017
11784134755123568269510312 ~2017
11784170015923568340031912 ~2017
11785138844323570277688712 ~2017
11785327063123570654126312 ~2017
11786268761923572537523912 ~2017
11786524496323573048992712 ~2017
11787074941123574149882312 ~2017
11787509518170725057108712 ~2019
11787749198323575498396712 ~2017
11787784379923575568759912 ~2017
11788120541923576241083912 ~2017
11788602587923577205175912 ~2017
11788654831770731928990312 ~2019
11789715883123579431766312 ~2017
11790021977923580043955912 ~2017
11790862607923581725215912 ~2017
11791782065923583564131912 ~2017
11792225447923584450895912 ~2017
11792268493123584536986312 ~2017
11792498479123584996958312 ~2017
Exponent Prime Factor Dig. Year
1179268699033962...28740914 2023
1179285367799835...67368714 2023
11792999603370757997619912 ~2019
11793864357770763186146312 ~2019
11794498460323588996920712 ~2017
11797427485770784564914312 ~2019
11797995871123595991742312 ~2017
11798000378323596000756712 ~2017
11798089379923596178759912 ~2017
11798111093923596222187912 ~2017
11798394131923596788263912 ~2017
11798516761370791100567912 ~2019
11799171947923598343895912 ~2017
11799606145123599212290312 ~2017
11799945857923599891715912 ~2017
11799957961123599915922312 ~2017
11800736701123601473402312 ~2017
11802722510323605445020712 ~2017
11802749657923605499315912 ~2017
11802908725123605817450312 ~2017
11802918665923605837331912 ~2017
11803542482323607084964712 ~2017
11804234240323608468480712 ~2017
11804978568170829871408712 ~2019
11805339049123610678098312 ~2017
Home
4.724.182 digits
e-mail
25-04-13