Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
18018518011136037036022312 ~2019
18018918935936037837871912 ~2019
18022254716336044509432712 ~2019
1802271756311730...86057714 2025
18024799919936049599839912 ~2019
18026510167136053020334312 ~2019
18027045197936054090395912 ~2019
18028070876336056141752712 ~2019
18031616837936063233675912 ~2019
18033363008336066726016712 ~2019
18033681827936067363655912 ~2019
18034874582336069749164712 ~2019
18035272073936070544147912 ~2019
18035560511936071121023912 ~2019
18036770893136073541786312 ~2019
18038507237936077014475912 ~2019
18039160147136078320294312 ~2019
18042502136336085004272712 ~2019
18044472428336088944856712 ~2019
18044888743136089777486312 ~2019
18046098752336092197504712 ~2019
18047669933936095339867912 ~2019
18048287192336096574384712 ~2019
18049063135136098126270312 ~2019
1805044997174620...92755314 2024
Exponent Prime Factor Dig. Year
18050956741136101913482312 ~2019
18051657200336103314400712 ~2019
18055671295136111342590312 ~2019
18058820075936117640151912 ~2019
1805961161091986...77199114 2024
18060872000336121744000712 ~2019
18060982622336121965244712 ~2019
18062965271936125930543912 ~2019
18063130973936126261947912 ~2019
18063545429936127090859912 ~2019
18063639769136127279538312 ~2019
18064014829136128029658312 ~2019
18064421138336128842276712 ~2019
18067408969136134817938312 ~2019
18068001991136136003982312 ~2019
1806854523832746...76221714 2024
18071002430336142004860712 ~2019
18071171509136142343018312 ~2019
18071736035936143472071912 ~2019
18071870021936143740043912 ~2019
18072426494336144852988712 ~2019
18072559208336145118416712 ~2019
1807317954833072...23211114 2024
18074467934336148935868712 ~2019
1807461982672736...17623915 2025
Exponent Prime Factor Dig. Year
18075323257136150646514312 ~2019
18076201057136152402114312 ~2019
18077921551136155843102312 ~2019
18079210292336158420584712 ~2019
18080668058336161336116712 ~2019
18081645085136163290170312 ~2019
18082021826336164043652712 ~2019
18084869243936169738487912 ~2019
18085083353936170166707912 ~2019
1808740369514087...35092714 2023
18088439750336176879500712 ~2019
18088466054336176932108712 ~2019
18090305933936180611867912 ~2019
18091257593936182515187912 ~2019
18092530597136185061194312 ~2019
18094244657936188489315912 ~2019
18096000595136192001190312 ~2019
18096061943936192123887912 ~2019
18099683102336199366204712 ~2019
18100237283936200474567912 ~2019
18104582203136209164406312 ~2019
18104994877136209989754312 ~2019
18106456781936212913563912 ~2019
18108413858336216827716712 ~2019
18108864269936217728539912 ~2019
Exponent Prime Factor Dig. Year
18111010772336222021544712 ~2019
18112865863136225731726312 ~2019
18113424301136226848602312 ~2019
18115168337936230336675912 ~2019
1811578839414492...21736914 2024
18116137507136232275014312 ~2019
18119731409936239462819912 ~2019
18120558791936241117583912 ~2019
18121883785136243767570312 ~2019
1812208165932573...95620714 2024
18122478703136244957406312 ~2019
18124150813136248301626312 ~2019
18124901017136249802034312 ~2019
18127126675136254253350312 ~2019
18131028206336262056412712 ~2019
1813116142912647...68648714 2024
18132869383136265738766312 ~2019
18133108435136266216870312 ~2019
18133693813136267387626312 ~2019
18133709041136267418082312 ~2019
18133855849136267711698312 ~2019
18133901837936267803675912 ~2019
18136467377936272934755912 ~2019
18137609561936275219123912 ~2019
18138705251936277410503912 ~2019
Home
4.724.182 digits
e-mail
25-04-13