Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
11683482945770100897674312 ~2019
11683507170170101043020712 ~2019
11684283230323368566460712 ~2017
11685671333923371342667912 ~2017
11686712413123373424826312 ~2017
11687002736323374005472712 ~2017
11689007813923378015627912 ~2017
11689251905923378503811912 ~2017
11691517033123383034066312 ~2017
11693371187923386742375912 ~2017
1169369041212221...78299114 2024
11693722061923387444123912 ~2017
11695037819923390075639912 ~2017
11695239341923390478683912 ~2017
1169608013036105...28016714 2024
11696499247123392998494312 ~2017
11697398828323394797656712 ~2017
11697842419770187054518312 ~2019
11700953185123401906370312 ~2017
11701260436170207562616712 ~2019
11702818177123405636354312 ~2017
11702911874323405823748712 ~2017
11703205739923406411479912 ~2017
11703815903923407631807912 ~2017
11704115970170224695820712 ~2019
Exponent Prime Factor Dig. Year
11704501475923409002951912 ~2017
11705429005123410858010312 ~2017
11706270572323412541144712 ~2017
11706590816323413181632712 ~2017
11707194317923414388635912 ~2017
11707832683123415665366312 ~2017
11709020180323418040360712 ~2017
11709038117370254228703912 ~2019
11710879531123421759062312 ~2017
11711874223123423748446312 ~2017
11711909120323423818240712 ~2017
11711925389923423850779912 ~2017
11712285744170273714464712 ~2019
11713472222323426944444712 ~2017
11714149595923428299191912 ~2017
11717092796323434185592712 ~2017
11717299931923434599863912 ~2017
11717354021923434708043912 ~2017
11718569773123437139546312 ~2017
11719909849123439819698312 ~2017
11720625684170323754104712 ~2019
11721043465123442086930312 ~2017
11723013223123446026446312 ~2017
11723149429123446298858312 ~2017
11723493338323446986676712 ~2017
Exponent Prime Factor Dig. Year
11724165523123448331046312 ~2017
11724842768323449685536712 ~2017
11726262896323452525792712 ~2017
11727251882323454503764712 ~2017
11727371766170364230596712 ~2019
11727786995923455573991912 ~2017
11727788858323455577716712 ~2017
11728117243370368703459912 ~2019
11728680623923457361247912 ~2017
11728776704323457553408712 ~2017
11729398346323458796692712 ~2017
11729770901923459541803912 ~2017
11730912965923461825931912 ~2017
11730949909123461899818312 ~2017
11731172668170387036008712 ~2019
11732171639923464343279912 ~2017
11733490459123466980918312 ~2017
11735094261770410565570312 ~2019
11735235373123470470746312 ~2017
11735691857923471383715912 ~2017
11737356007770424136046312 ~2019
11737640753923475281507912 ~2017
11737850030323475700060712 ~2017
11738344208323476688416712 ~2017
11738654294323477308588712 ~2017
Exponent Prime Factor Dig. Year
11739003611923478007223912 ~2017
11739393793123478787586312 ~2017
11740600187923481200375912 ~2017
11740865468323481730936712 ~2017
11743962487123487924974312 ~2017
11744544611923489089223912 ~2017
11745757561123491515122312 ~2017
11745852344323491704688712 ~2017
11745874489123491748978312 ~2017
11746770528170480623168712 ~2019
11746966727923493933455912 ~2017
11747069251123494138502312 ~2017
11747110985923494221971912 ~2017
11747450138323494900276712 ~2017
11747699021923495398043912 ~2017
11748261218323496522436712 ~2017
11748533699923497067399912 ~2017
11748708281923497416563912 ~2017
11748813938323497627876712 ~2017
11748897344323497794688712 ~2017
11749088696323498177392712 ~2017
11749868459923499736919912 ~2017
11750828497770504970986312 ~2019
11750853301123501706602312 ~2017
11752667579370516005475912 ~2019
Home
4.724.182 digits
e-mail
25-04-13