Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
5795667845911591335691912 ~2015
5795988887911591977775912 ~2015
5796036566311592073132712 ~2015
5796205592311592411184712 ~2015
5796456599911592913199912 ~2015
5797427311746379418493712 ~2017
5797616695734785700174312 ~2016
5798108959111596217918312 ~2015
5798633771911597267543912 ~2015
5798698529911597397059912 ~2015
5798907443334793444659912 ~2016
5798975600311597951200712 ~2015
5798987419111597974838312 ~2015
5799083438311598166876712 ~2015
5799208337911598416675912 ~2015
5799481787911598963575912 ~2015
5799520753111599041506312 ~2015
5799913637911599827275912 ~2015
5800279069111600558138312 ~2015
5800954694311601909388712 ~2015
5800957663734805745982312 ~2016
5801436971334808621827912 ~2016
5801860118311603720236712 ~2015
5802157823911604315647912 ~2015
5802236378311604472756712 ~2015
Exponent Prime Factor Dig. Year
5802306293911604612587912 ~2015
5802345841111604691682312 ~2015
5802982548134817895288712 ~2016
5803874353111607748706312 ~2015
5804352625146434821000912 ~2017
5804384207911608768415912 ~2015
5804543197111609086394312 ~2015
5804599331911609198663912 ~2015
5804924908146439399264912 ~2017
5805670081111611340162312 ~2015
5805724704134834348224712 ~2016
5805981380311611962760712 ~2015
5806127912311612255824712 ~2015
5806138709911612277419912 ~2015
5806151093911612302187912 ~2015
5806360040311612720080712 ~2015
580645734074238...58711114 2024
5807054597911614109195912 ~2015
5807501843911615003687912 ~2015
5808170918311616341836712 ~2015
5808304697911616609395912 ~2015
5808305393911616610787912 ~2015
5808862947734853177686312 ~2016
5809142224134854853344712 ~2016
5809277034134855662204712 ~2016
Exponent Prime Factor Dig. Year
5809512036134857072216712 ~2016
5809579589911619159179912 ~2015
5809738627111619477254312 ~2015
5809838779734859032678312 ~2016
5810318155111620636310312 ~2015
5810731040311621462080712 ~2015
5810937920311621875840712 ~2015
5811152053111622304106312 ~2015
5811391022311622782044712 ~2015
5811568031911623136063912 ~2015
5812121939911624243879912 ~2015
5812172575746497380605712 ~2017
5812369361911624738723912 ~2015
5813448260311626896520712 ~2015
5813973464311627946928712 ~2015
5813973800311627947600712 ~2015
5814180200311628360400712 ~2015
581485307231453...68075114 2023
5815116350311630232700712 ~2015
5815252880311630505760712 ~2015
5815324534134891947204712 ~2016
5816462515334898775091912 ~2016
5817204901111634409802312 ~2015
5817287018311634574036712 ~2015
5817384854311634769708712 ~2015
Exponent Prime Factor Dig. Year
5817599339911635198679912 ~2015
5817627661111635255322312 ~2015
5817629033911635258067912 ~2015
5818372049911636744099912 ~2015
5818406276311636812552712 ~2015
5818454047111636908094312 ~2015
5818620902311637241804712 ~2015
5818743905911637487811912 ~2015
5819807102311639614204712 ~2015
5819884123111639768246312 ~2015
5820383723911640767447912 ~2015
5820407269111640814538312 ~2015
5820497495911640994991912 ~2015
5820698663911641397327912 ~2015
5820967633111641935266312 ~2015
5821376083334928256499912 ~2016
5821697040134930182240712 ~2016
5821775091734930650550312 ~2016
5821835282311643670564712 ~2015
5822616236311645232472712 ~2015
5822729065734936374394312 ~2016
5823115454311646230908712 ~2015
5823225115111646450230312 ~2015
5823434449111646868898312 ~2015
5823769358311647538716712 ~2015
Home
4.888.230 digits
e-mail
25-06-29