Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
5773058653111546117306312 ~2015
5773111748946184893991312 ~2017
5773113452311546226904712 ~2015
5773404023911546808047912 ~2015
5773561658311547123316712 ~2015
5773801523911547603047912 ~2015
5774113219111548226438312 ~2015
5774300956134645805736712 ~2016
5774307187111548614374312 ~2015
5774328281911548656563912 ~2015
5774566568311549133136712 ~2015
5774681717911549363435912 ~2015
5774999021911549998043912 ~2015
5775158297911550316595912 ~2015
5775179357911550358715912 ~2015
5775246422311550492844712 ~2015
5775471647334652829883912 ~2016
5775704153911551408307912 ~2015
5775770383334654622299912 ~2016
5775995478134655972868712 ~2016
5776453367911552906735912 ~2015
5776620740311553241480712 ~2015
5776632439111553264878312 ~2015
5776993566757769935667112 ~2017
5777264369911554528739912 ~2015
Exponent Prime Factor Dig. Year
5777406011911554812023912 ~2015
5777549282311555098564712 ~2015
5777703245911555406491912 ~2015
5777868020311555736040712 ~2015
5777894303911555788607912 ~2015
5778174014311556348028712 ~2015
5778492685111556985370312 ~2015
5778599461111557198922312 ~2015
5779118731780907662243912 ~2017
5779714627111559429254312 ~2015
5779757726311559515452712 ~2015
5779796552311559593104712 ~2015
5779889570946239116567312 ~2017
5780252443334681514659912 ~2016
5780321121734681926730312 ~2016
5780334791911560669583912 ~2015
5780628907111561257814312 ~2015
5780998106311561996212712 ~2015
5781803177911563606355912 ~2015
5782154828311564309656712 ~2015
5782181609911564363219912 ~2015
5782701181111565402362312 ~2015
5782781197111565562394312 ~2015
5782935109111565870218312 ~2015
5783557137734701342826312 ~2016
Exponent Prime Factor Dig. Year
5783591365111567182730312 ~2015
5783637367111567274734312 ~2015
5783925626311567851252712 ~2015
5784250853946274006831312 ~2017
5784910471111569820942312 ~2015
5784937669111569875338312 ~2015
5785099144746280793157712 ~2017
5785346078311570692156712 ~2015
5785517683111571035366312 ~2015
5786164718311572329436712 ~2015
5786376595111572753190312 ~2015
5786483161111572966322312 ~2015
5786485187911572970375912 ~2015
5786485990357864859903112 ~2017
5786492954311572985908712 ~2015
5786503765111573007530312 ~2015
5787001376311574002752712 ~2015
5787901914757879019147112 ~2017
5787967499911575934999912 ~2015
5788205222311576410444712 ~2015
5788281826357882818263112 ~2017
5788375736311576751472712 ~2015
5788698607111577397214312 ~2015
5788759181911577518363912 ~2015
5789403509911578807019912 ~2015
Exponent Prime Factor Dig. Year
5790140472134740842832712 ~2016
5790162731334740976387912 ~2016
5790318757111580637514312 ~2015
5790346479734742078878312 ~2016
579051216232791...62228714 2023
5790558395911581116791912 ~2015
5790760375146326083000912 ~2017
5790930481111581860962312 ~2015
5791354738146330837904912 ~2017
5791380867734748285206312 ~2016
5791703009946333624079312 ~2017
5791760630981084648832712 ~2017
5792011693111584023386312 ~2015
5792316917911584633835912 ~2015
5792756968134756541808712 ~2016
5792904391111585808782312 ~2015
5793066086311586132172712 ~2015
5793140468311586280936712 ~2015
5793284533111586569066312 ~2015
5793322417111586644834312 ~2015
5794214354311588428708712 ~2015
5794972945111589945890312 ~2015
5794989238134769935428712 ~2016
5795219321911590438643912 ~2015
5795646468134773878808712 ~2016
Home
4.888.230 digits
e-mail
25-06-29