Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
12901345868325802691736712 ~2018
12902856557925805713115912 ~2018
12904765709925809531419912 ~2018
12906170191125812340382312 ~2018
1290653383331445...89329714 2025
12907149509925814299019912 ~2018
12907558303777445349822312 ~2019
12908549851125817099702312 ~2018
12908729779125817459558312 ~2018
12910079975925820159951912 ~2018
1291196053794364...61810314 2023
12912224894325824449788712 ~2018
12912450416325824900832712 ~2018
12912628352325825256704712 ~2018
12913548731925827097463912 ~2018
12914526569925829053139912 ~2018
12914743840177488463040712 ~2019
12915269243925830538487912 ~2018
1291579829592479...72812914 2024
12916444294177498665764712 ~2019
12916458767925832917535912 ~2018
12916490072325832980144712 ~2018
12917050423777502302542312 ~2019
12918289253925836578507912 ~2018
12919317029925838634059912 ~2018
Exponent Prime Factor Dig. Year
12919393613925838787227912 ~2018
12919723385925839446771912 ~2018
12920410142325840820284712 ~2018
12921185378325842370756712 ~2018
12921255503925842511007912 ~2018
12921353672325842707344712 ~2018
12921673437777530040626312 ~2019
12922579655925845159311912 ~2018
12923247446325846494892712 ~2018
12923558759925847117519912 ~2018
12925276058325850552116712 ~2018
1292582211011331...73403115 2023
12926378081925852756163912 ~2018
12928273099125856546198312 ~2018
12929172299925858344599912 ~2018
12929666646177577999876712 ~2019
12929739121125859478242312 ~2018
12930730980177584385880712 ~2019
12931180661925862361323912 ~2018
12931430765925862861531912 ~2018
12932765534325865531068712 ~2018
12933026755125866053510312 ~2018
12935635873125871271746312 ~2018
12936193016325872386032712 ~2018
12936280201125872560402312 ~2018
Exponent Prime Factor Dig. Year
12936292742325872585484712 ~2018
12936599408325873198816712 ~2018
12936657985125873315970312 ~2018
12937785074325875570148712 ~2018
12937884751125875769502312 ~2018
12938274560325876549120712 ~2018
12938745029925877490059912 ~2018
12939187555125878375110312 ~2018
12940292743125880585486312 ~2018
12940844035125881688070312 ~2018
12942466847925884933695912 ~2018
12942653089777655918538312 ~2019
12945326695125890653390312 ~2018
12945995303925891990607912 ~2018
12947505203925895010407912 ~2018
12947703623925895407247912 ~2018
12948817211925897634423912 ~2018
12948949567125897899134312 ~2018
12949106701125898213402312 ~2018
12949141471125898282942312 ~2018
12949413503377696481019912 ~2019
12949755320325899510640712 ~2018
12950189344177701136064712 ~2019
12951179078325902358156712 ~2018
12951185633925902371267912 ~2018
Exponent Prime Factor Dig. Year
12953349515925906699031912 ~2018
12953365085925906730171912 ~2018
12953729246325907458492712 ~2018
12956220859125912441718312 ~2018
12956886851925913773703912 ~2018
12957154705125914309410312 ~2018
12957245609925914491219912 ~2018
12957522991125915045982312 ~2018
12957940250325915880500712 ~2018
12959172767925918345535912 ~2018
12960027344325920054688712 ~2018
12960373495125920746990312 ~2018
12960520933777763125602312 ~2019
12960595385925921190771912 ~2018
12960837914325921675828712 ~2018
12961064759925922129519912 ~2018
12961116559125922233118312 ~2018
12961619011125923238022312 ~2018
12962277535125924555070312 ~2018
12962825997777776955986312 ~2019
12962948951925925897903912 ~2018
12962984074177777904444712 ~2019
12963436232325926872464712 ~2018
12963547671777781286030312 ~2019
12963576686325927153372712 ~2018
Home
4.724.182 digits
e-mail
25-04-13