Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
9944661551919889323103912 ~2017
9944688050319889376100712 ~2017
994525008372545...21427314 2024
9945630589119891261178312 ~2017
9945737131119891474262312 ~2017
9946521313119893042626312 ~2017
9947293255119894586510312 ~2017
9948312319359689873915912 ~2018
9949467046159696802276712 ~2018
9950422268319900844536712 ~2017
9951890876319903781752712 ~2017
9952679771919905359543912 ~2017
9953467886319906935772712 ~2017
9954382754319908765508712 ~2017
9956049475119912098950312 ~2017
9956080357119912160714312 ~2017
9956937770319913875540712 ~2017
9956999731119913999462312 ~2017
9957215575119914431150312 ~2017
9957891229119915782458312 ~2017
9959571128319919142256712 ~2017
9959658451119919316902312 ~2017
9959693894319919387788712 ~2017
9960005084319920010168712 ~2017
9961116115119922232230312 ~2017
Exponent Prime Factor Dig. Year
9961271683119922543366312 ~2017
9961590913119923181826312 ~2017
9962040926319924081852712 ~2017
996263402593028...43873714 2024
9963385788159780314728712 ~2018
9963854231919927708463912 ~2017
9963907910319927815820712 ~2017
9964553903359787323419912 ~2018
9964702811919929405623912 ~2017
9964890680319929781360712 ~2017
996550982812949...09117714 2024
9966606187119933212374312 ~2017
9967340741919934681483912 ~2017
9967843979919935687959912 ~2017
9967970864319935941728712 ~2017
996915183133748...88568914 2024
9970393592319940787184712 ~2017
9971532247119943064494312 ~2017
9971534589759829207538312 ~2018
9971793055119943586110312 ~2017
9972265511359833593067912 ~2018
9972311929119944623858312 ~2017
9972738239919945476479912 ~2017
9972851978319945703956712 ~2017
9973446023919946892047912 ~2017
Exponent Prime Factor Dig. Year
9974486929119948973858312 ~2017
9974640101919949280203912 ~2017
9975812911119951625822312 ~2017
997676496434010...15648714 2024
9976812937119953625874312 ~2017
9977334734319954669468712 ~2017
9977393036319954786072712 ~2017
9978176198319956352396712 ~2017
9978252773919956505547912 ~2017
9979185119919958370239912 ~2017
9979381358319958762716712 ~2017
9979781933919959563867912 ~2017
9979918581759879511490312 ~2018
9980462648319960925296712 ~2017
9980534081919961068163912 ~2017
9980867009919961734019912 ~2017
9981313564159887881384712 ~2018
9982277227119964554454312 ~2017
9982308181119964616362312 ~2017
9984541477119969082954312 ~2017
9985369771119970739542312 ~2017
9985448773119970897546312 ~2017
998582784312366...88147115 2023
9986661097119973322194312 ~2017
9988484756319976969512712 ~2017
Exponent Prime Factor Dig. Year
9989104463919978208927912 ~2017
9989149670319978299340712 ~2017
9989727241119979454482312 ~2017
9990163421919980326843912 ~2017
9992036621919984073243912 ~2017
9992393695119984787390312 ~2017
9993551783359961310699912 ~2018
9995103128319990206256712 ~2017
9995266760319990533520712 ~2017
9995533292319991066584712 ~2017
9995708239119991416478312 ~2017
9995839427919991678855912 ~2017
9995929499919991858999912 ~2017
9997035823119994071646312 ~2017
9997621328319995242656712 ~2017
9998032451919996064903912 ~2017
9998053868319996107736712 ~2017
9999328382319998656764712 ~2017
10001484597760008907586312 ~2018
10001553746320003107492712 ~2017
10002982729120005965458312 ~2017
10003801423120007602846312 ~2017
10003917710320007835420712 ~2017
10005846997120011693994312 ~2017
10005869458160035216748712 ~2018
Home
4.694.480 digits
e-mail
25-03-30