Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
9250429258174003434064912 ~2018
9252515321918505030643912 ~2017
9253260055118506520110312 ~2017
9254146962155524881772712 ~2018
9254286554318508573108712 ~2017
9254406386318508812772712 ~2017
9254554079918509108159912 ~2017
9254808854318509617708712 ~2017
9255185561918510371123912 ~2017
9255293295755531759774312 ~2018
9255389258318510778516712 ~2017
9255560429918511120859912 ~2017
9255752521118511505042312 ~2017
9256022639974048181119312 ~2018
9257387300974059098407312 ~2018
9257505512318515011024712 ~2017
9258269564318516539128712 ~2017
9258475771118516951542312 ~2017
9258506683118517013366312 ~2017
9258888893918517777787912 ~2017
9259703725118519407450312 ~2017
9260929433918521858867912 ~2017
9261020741918522041483912 ~2017
9261304123118522608246312 ~2017
9261882271118523764542312 ~2017
Exponent Prime Factor Dig. Year
9261886991918523773983912 ~2017
9263482898318526965796712 ~2017
9265051327174120410616912 ~2018
926540726173984...22531114 2025
9265688552318531377104712 ~2017
9265891442318531782884712 ~2017
9267750557974142004463312 ~2018
9267817226318535634452712 ~2017
9268070937755608425626312 ~2018
9268664786318537329572712 ~2017
926869013834448...66384114 2023
9269130188318538260376712 ~2017
926919961074171...24815114 2024
9269219113118538438226312 ~2017
9269780023174158240184912 ~2018
9270018937118540037874312 ~2017
9270421463918540842927912 ~2017
9270443204318540886408712 ~2017
9272203118318544406236712 ~2017
9272548859918545097719912 ~2017
9272566177118545132354312 ~2017
9272692193918545384387912 ~2017
9273350336318546700672712 ~2017
9273918235118547836470312 ~2017
9274495789118548991578312 ~2017
Exponent Prime Factor Dig. Year
9274600793355647604759912 ~2018
9275193815918550387631912 ~2017
9275247691174201981528912 ~2018
9275450224174203601792912 ~2018
9276280357174210242856912 ~2018
9276714931355660289587912 ~2018
927715008313888...48355315 2024
9277196125118554392250312 ~2017
9277676929774221415437712 ~2018
9277927931918555855863912 ~2017
9278086992155668521952712 ~2018
9278365927118556731854312 ~2017
9278992267118557984534312 ~2017
9279038693918558077387912 ~2017
9279642109355677852655912 ~2018
9280413938318560827876712 ~2017
9280429501355682577007912 ~2018
9280444498155682666988712 ~2018
9280531175918561062351912 ~2017
9280595821355683574927912 ~2018
9280743353918561486707912 ~2017
9280766899118561533798312 ~2017
9280776362318561552724712 ~2017
9281508923918563017847912 ~2017
9282490745918564981491912 ~2017
Exponent Prime Factor Dig. Year
9283196285918566392571912 ~2017
9283325598155699953588712 ~2018
9286544545118573089090312 ~2017
9287694923918575389847912 ~2017
9287715551974301724415312 ~2018
9288008875118576017750312 ~2017
9288052057118576104114312 ~2017
9288245216318576490432712 ~2017
9288697342774309578741712 ~2018
9288718763918577437527912 ~2017
9290252147918580504295912 ~2017
9290857505918581715011912 ~2017
9291564739755749388438312 ~2018
9292201622318584403244712 ~2017
9292946017118585892034312 ~2017
9292947067118585894134312 ~2017
9293584030155761504180712 ~2018
9293721536318587443072712 ~2017
9293807737118587615474312 ~2017
9296370425918592740851912 ~2017
9296445877118592891754312 ~2017
9296720551118593441102312 ~2017
9297349778318594699556712 ~2017
9297574069118595148138312 ~2017
9299538644318599077288712 ~2017
Home
4.709.457 digits
e-mail
25-04-06