Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
9343649198318687298396712 ~2017
9344296748318688593496712 ~2017
9344322240156065933440712 ~2018
9345447470318690894940712 ~2017
9345790117118691580234312 ~2017
9345991155756075946934312 ~2018
9346583048318693166096712 ~2017
9346631429918693262859912 ~2017
9346675901918693351803912 ~2017
9347357000974778856007312 ~2018
9347814958774782519669712 ~2018
9347831297974782650383312 ~2018
9348544483118697088966312 ~2017
9349804661918699609323912 ~2017
9349816043918699632087912 ~2017
9349946666318699893332712 ~2017
9350987882318701975764712 ~2017
9351870524318703741048712 ~2017
9351906917918703813835912 ~2017
9351965473118703930946312 ~2017
9352114000174816912000912 ~2018
9352216399118704432798312 ~2017
9352343732318704687464712 ~2017
9352887752974823102023312 ~2018
935289228191827...18832715 2024
Exponent Prime Factor Dig. Year
9353571476318707142952712 ~2017
9354145627118708291254312 ~2017
9355447863756132687182312 ~2018
9355575409118711150818312 ~2017
9356727367118713454734312 ~2017
9356781788318713563576712 ~2017
9357259193918714518387912 ~2017
9357500158156145000948712 ~2018
9357854972318715709944712 ~2017
9358549399756151296398312 ~2018
9358988519918717977039912 ~2017
9359461993174875695944912 ~2018
9359914985918719829971912 ~2017
9360927887918721855775912 ~2017
9361352063918722704127912 ~2017
9362545939118725091878312 ~2017
9362730070774901840565712 ~2018
9362776115918725552231912 ~2017
9364256509118728513018312 ~2017
9364288549118728577098312 ~2017
9365060263118730120526312 ~2017
9365088431918730176863912 ~2017
9365302003118730604006312 ~2017
936557559431371...70055315 2024
9367163333918734326667912 ~2017
Exponent Prime Factor Dig. Year
9367771111118735542222312 ~2017
9367802294318735604588712 ~2017
9367866109118735732218312 ~2017
9368507329118737014658312 ~2017
9368805854318737611708712 ~2017
9369496235356216977411912 ~2018
9369643784318739287568712 ~2017
9370089745756220538474312 ~2018
937041626592083...75361715 2025
9371469750156228818500712 ~2018
9372317069918744634139912 ~2017
9372466637974979733103312 ~2018
9372944512774983556101712 ~2018
9373169956174985359648912 ~2018
9373611917356241671503912 ~2018
9374061079118748122158312 ~2017
9374431241918748862483912 ~2017
9375061910318750123820712 ~2017
9375314599118750629198312 ~2017
9376576820318753153640712 ~2017
9377731727918755463455912 ~2017
9378116395118756232790312 ~2017
9378447095918756894191912 ~2017
9378816509918757633019912 ~2017
9378825481118757650962312 ~2017
Exponent Prime Factor Dig. Year
9378936881918757873763912 ~2017
9379109084318758218168712 ~2017
9379704619118759409238312 ~2017
9380636900318761273800712 ~2017
9380749091918761498183912 ~2017
9380770427918761540855912 ~2017
9381060578318762121156712 ~2017
9381276740318762553480712 ~2017
9381709639118763419278312 ~2017
9382017116318764034232712 ~2017
9382043114318764086228712 ~2017
9383327395118766654790312 ~2017
9383347955918766695911912 ~2017
9383921485118767842970312 ~2017
9385132663118770265326312 ~2017
9385471823918770943647912 ~2017
9385612490318771224980712 ~2017
9385996076318771992152712 ~2017
9386422292318772844584712 ~2017
9387225617356323353703912 ~2018
9387826921118775653842312 ~2017
9388744865918777489731912 ~2017
9388949773118777899546312 ~2017
938949378473098...48951114 2024
938979493378863...17412914 2024
Home
4.709.457 digits
e-mail
25-04-06