Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
157972321793159446435911 ~2011
1579807255112638458040912 ~2012
157985614913159712298311 ~2011
157989048113159780962311 ~2011
1579904827128438286887912 ~2013
157992012833159840256711 ~2011
157992020633159840412711 ~2011
157998665393159973307911 ~2011
158001615713160032314311 ~2011
158014450313160289006311 ~2011
158014450913160289018311 ~2011
158014627793160292555911 ~2011
158015472713160309454311 ~2011
158017816793160356335911 ~2011
158038589633160771792711 ~2011
158039763233160795264711 ~2011
158041569379482494162311 ~2012
1580422550912643380407312 ~2012
158046332033160926640711 ~2011
1580529124112644232992912 ~2012
158053620713161072414311 ~2011
158053908233161078164711 ~2011
1580539982922127559760712 ~2013
158057572379483454342311 ~2012
158063366033161267320711 ~2011
Exponent Prime Factor Dig. Year
158083154993161663099911 ~2011
158086617233161732344711 ~2011
158088805379485328322311 ~2012
158099606513161992130311 ~2011
158104908593162098171911 ~2011
1581049174315810491743112 ~2012
158112805193162256103911 ~2011
1581135732715811357327112 ~2012
158114615513162292310311 ~2011
158126737313162534746311 ~2011
158132166233162643324711 ~2011
158134814579488088874311 ~2012
158140822793162816455911 ~2011
158153334593163066691911 ~2011
1581632095128469377711912 ~2013
158165923313163318466311 ~2011
1581687884337960509223312 ~2013
158175067913163501358311 ~2011
158180679833163613596711 ~2011
158187382313163747646311 ~2011
158191391033163827820711 ~2011
158192538833163850776711 ~2011
1581950953334802920972712 ~2013
158202202433164044048711 ~2011
158202260033164045200711 ~2011
Exponent Prime Factor Dig. Year
1582058235725312931771312 ~2013
158213608339492816499911 ~2012
158214480593164289611911 ~2011
158218434233164368684711 ~2011
158227574819493654488711 ~2012
158236349993164726999911 ~2011
158239109393164782187911 ~2011
158250368819495022128711 ~2012
158257098113165141962311 ~2011
1582575001337981800031312 ~2013
158259318671519...59232114 2023
158260576131063...71593714 2023
1582687358922157623024712 ~2013
158269024939496141495911 ~2012
158269100819496146048711 ~2012
158271549113165430982311 ~2011
158277326993165546539911 ~2011
158284867619497092056711 ~2012
158289072713165781454311 ~2011
158289225233165784504711 ~2011
158295634793165912695911 ~2011
1583150474922164106648712 ~2013
158324617193166492343911 ~2011
158333377433166667548711 ~2011
158333608433166672168711 ~2011
Exponent Prime Factor Dig. Year
1583343328315833433283112 ~2012
158357737313167154746311 ~2011
158368371233167367424711 ~2011
1583686480934841102579912 ~2013
158370560939502233655911 ~2012
158390402579503424154311 ~2012
158404279313168085586311 ~2011
158413255739504795343911 ~2012
158414121179504847270311 ~2012
158415077393168301547911 ~2011
158419830979505189858311 ~2012
158420833913168416678311 ~2011
1584216039115842160391112 ~2012
158424445913168488918311 ~2011
158429995913168599918311 ~2011
1584479407112675835256912 ~2012
1584626990912677015927312 ~2012
158463947579507836854311 ~2012
158468834993169376699911 ~2011
158469334193169386683911 ~2011
158474625179508477510311 ~2012
158488046819509282808711 ~2012
158498757113169975142311 ~2011
158499169913169983398311 ~2011
158500334993170006699911 ~2011
Home
5.157.210 digits
e-mail
25-11-02