Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
1087212390132616371703112 ~2012
108722554792174451095911 ~2009
108729448936523766935911 ~2011
108731184112174623682311 ~2009
108733533712174670674311 ~2009
108741792493416...20035914 2024
108749471512174989430311 ~2009
108755367232175107344711 ~2009
108756216118700497288911 ~2011
108760631098700850487311 ~2011
108765154912175303098311 ~2009
108765713512175314270311 ~2009
108767679832175353596711 ~2009
1087691494726104595872912 ~2012
108774599031235...44980914 2024
108780451312175609026311 ~2009
108784651312175693026311 ~2009
108785545498702843639311 ~2011
108786269392175725387911 ~2009
108795614632175912292711 ~2009
108795750616527745036711 ~2011
108797192992175943859911 ~2009
1088030825315232431554312 ~2011
108803453032176069060711 ~2009
108805527232176110544711 ~2009
Exponent Prime Factor Dig. Year
108810297592176205951911 ~2009
108819377392176387547911 ~2009
108835494832176709896711 ~2009
108835711192176714223911 ~2009
108836456032176729120711 ~2009
1088378688710883786887112 ~2011
108839424232176788484711 ~2009
108841796878707343749711 ~2011
108843815398707505231311 ~2011
1088452331315238332638312 ~2011
108848248312176964966311 ~2009
108848954998707916399311 ~2011
1088493511128300831288712 ~2012
108857737792177154755911 ~2009
108858070216531484212711 ~2011
108869449792177388995911 ~2009
108869624512177392490311 ~2009
108869948576532196914311 ~2011
108870914416532254864711 ~2011
108874461592177489231911 ~2009
108877667512177553350311 ~2009
108879094912177581898311 ~2009
108883056112177661122311 ~2009
108883468018710677440911 ~2011
108887438632177748772711 ~2009
Exponent Prime Factor Dig. Year
1088880540710888805407112 ~2011
1088883122941377558670312 ~2013
108889051432177781028711 ~2009
108896160712177923214311 ~2009
108896632198711730575311 ~2011
108900168112178003362311 ~2009
108902022592178040451911 ~2009
108903734632178074692711 ~2009
108907122712178142454311 ~2009
108907147616534428856711 ~2011
108907982512178159650311 ~2009
108913402792178268055911 ~2009
108917886416535073184711 ~2011
108928936912178578738311 ~2009
108930836992178616739911 ~2009
1089320322710893203227112 ~2011
108949065232178981304711 ~2009
108953344912179066898311 ~2009
108965384032179307680711 ~2009
108968537398717482991311 ~2011
108973235816538394148711 ~2011
108977126032179542520711 ~2009
108978585376538715122311 ~2011
108983654632179673092711 ~2009
108987648616539258916711 ~2011
Exponent Prime Factor Dig. Year
108988084192179761683911 ~2009
108989498632179789972711 ~2009
108992346832179846936711 ~2009
108993850736539631043911 ~2011
109002460792180049215911 ~2009
109010565112180211302311 ~2009
109013763712180275274311 ~2009
109014087232180281744711 ~2009
109017241432180344828711 ~2009
109017783616541067016711 ~2011
109019713432180394268711 ~2009
109023606712180472134311 ~2009
109023629032180472580711 ~2009
109026659512180533190311 ~2009
1090301850710903018507112 ~2011
1090326495110903264951112 ~2011
109038193312180763866311 ~2009
109038279536542296771911 ~2011
109050126478724010117711 ~2011
109051971192837...90363914 2023
109056912112181138242311 ~2009
109058169832181163396711 ~2009
109060081312181201626311 ~2009
109065697312181313946311 ~2009
109068099712181361994311 ~2009
Home
5.232.152 digits
e-mail
25-12-07