Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
544526152091175...62102315 2023
5445321739110890643478312 ~2015
5445683033910891366067912 ~2015
5445746198310891492396712 ~2015
5446006679910892013359912 ~2015
5446524215910893048431912 ~2015
5446903010310893806020712 ~2015
5446946461110893892922312 ~2015
5447597027943580776223312 ~2016
5447900019732687400118312 ~2016
5448109199910896218399912 ~2015
5448381684132690290104712 ~2016
5448423449943587387599312 ~2016
5448628292310897256584712 ~2015
5448784921110897569842312 ~2015
5448990827910897981655912 ~2015
5449365018132696190108712 ~2016
5449916102310899832204712 ~2015
5449922647110899845294312 ~2015
5450015609910900031219912 ~2015
5451223237110902446474312 ~2015
5451393115110902786230312 ~2015
5451414397332708486383912 ~2016
5451876176310903752352712 ~2015
5452031439732712188638312 ~2016
Exponent Prime Factor Dig. Year
5452166086132712996516712 ~2016
5452347283110904694566312 ~2015
5452658419110905316838312 ~2015
5453133623910906267247912 ~2015
5453326733910906653467912 ~2015
545449781832749...00423314 2024
5454968690310909937380712 ~2015
5454997625910909995251912 ~2015
5455371638310910743276712 ~2015
5455422758976375918624712 ~2017
5455496585910910993171912 ~2015
5455695449910911390899912 ~2015
5455743772143645950176912 ~2016
5456384343154563843431112 ~2017
545677229031746...32896114 2023
5456835124743654680997712 ~2016
5457134369910914268739912 ~2015
5457135197910914270395912 ~2015
5457229877910914459755912 ~2015
5457252719910914505439912 ~2015
5457291689910914583379912 ~2015
5457319205910914638411912 ~2015
5457325359732743952158312 ~2016
5457475295910914950591912 ~2015
5457822319110915644638312 ~2015
Exponent Prime Factor Dig. Year
5458019707110916039414312 ~2015
5458450148310916900296712 ~2015
5458713254310917426508712 ~2015
5459217233910918434467912 ~2015
5459229443910918458887912 ~2015
5459635114132757810684712 ~2016
5459725036143677800288912 ~2016
5459766803910919533607912 ~2015
5459897549910919795099912 ~2015
5459968547376439559662312 ~2017
5460045998310920091996712 ~2015
5460572267910921144535912 ~2015
5461022551110922045102312 ~2015
5461729637910923459275912 ~2015
5461835306310923670612712 ~2015
5462645479110925290958312 ~2015
5462657881954626578819112 ~2017
5463390535110926781070312 ~2015
5463471203910926942407912 ~2015
5463750067954637500679112 ~2017
5464108562310928217124712 ~2015
5464340827110928681654312 ~2015
5464756483110929512966312 ~2015
5464844597910929689195912 ~2015
5464934721732789608330312 ~2016
Exponent Prime Factor Dig. Year
5464967408310929934816712 ~2015
5465380122754653801227112 ~2017
5465672227732794033366312 ~2016
5465734577332794407463912 ~2016
5466222481143729779848912 ~2016
5466253759110932507518312 ~2015
5466264307110932528614312 ~2015
5466381094143731048752912 ~2016
5466451397910932902795912 ~2015
5466659110354666591103112 ~2017
5466882034132801292204712 ~2016
5467021969954670219699112 ~2017
5467062859110934125718312 ~2015
5467303351110934606702312 ~2015
5467435324354674353243112 ~2017
5467572121110935144242312 ~2015
5468112845910936225691912 ~2015
5468124992310936249984712 ~2015
5468275031943746200255312 ~2016
5468353613910936707227912 ~2015
5468426234310936852468712 ~2015
5468802867732812817206312 ~2016
5468815376310937630752712 ~2015
5469395161954693951619112 ~2017
5469753521332818521127912 ~2016
Home
4.724.182 digits
e-mail
25-04-13