Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
177422080313548441606311 ~2011
177422205113548444102311 ~2011
1774389547310646337283912 ~2012
177447412913548948258311 ~2011
177447715433548954308711 ~2011
177447875513548957510311 ~2011
177453812993549076259911 ~2011
1774539215353236176459112 ~2014
1774582693710647496162312 ~2012
177459298913549185978311 ~2011
177465594233549311884711 ~2011
177471148313549422966311 ~2011
1774728864110648373184712 ~2012
177480341033549606820711 ~2011
177482746193549654923911 ~2011
1774829232110648975392712 ~2012
1774877506942597060165712 ~2014
177491255393549825107911 ~2011
177494062193549881243911 ~2011
177499492193549989843911 ~2011
177500250113550005002311 ~2011
177520449113550408982311 ~2011
177547936433550958728711 ~2011
1775506913356816221225712 ~2014
177551966393551039327911 ~2011
Exponent Prime Factor Dig. Year
177555342593551106851911 ~2011
177556001513551120030311 ~2011
177569693393551393867911 ~2011
177577458233551549164711 ~2011
177577463393551549267911 ~2011
1775811580110654869480712 ~2012
1775856482953275694487112 ~2014
1775861419710655168518312 ~2012
177602399993552047999911 ~2011
177621002033552420040711 ~2011
177630266633552605332711 ~2011
1776338491131974092839912 ~2013
177637881833552757636711 ~2011
177640199633552803992711 ~2011
177642232277237...42679914 2025
177644273993552885479911 ~2011
177645967193552919343911 ~2011
177658128593553162571911 ~2011
1776600283310659601699912 ~2012
177663848993553276979911 ~2011
1776643041728426288667312 ~2013
177668605913553372118311 ~2011
1776962605328431401684912 ~2013
177698891033553977820711 ~2011
177702014513554040290311 ~2011
Exponent Prime Factor Dig. Year
177708795833554175916711 ~2011
1777126495714217011965712 ~2013
177713057033554261140711 ~2011
1777282662717772826627112 ~2013
177739847993554796959911 ~2011
1777459452110664756712712 ~2012
177758997593555179951911 ~2011
177784105193555682103911 ~2011
177791457113555829142311 ~2011
1778003426924892047976712 ~2013
177806242193556124843911 ~2011
177806376833556127536711 ~2011
177817306193556346123911 ~2011
177822937793556458755911 ~2011
177823501193556470023911 ~2011
177827038913556540778311 ~2011
177836534513556730690311 ~2011
1778417711324897847958312 ~2013
1778458237310670749423912 ~2012
177850754393557015087911 ~2011
1778925835353367775059112 ~2014
1778938725710673632354312 ~2012
177901682993558033659911 ~2011
177903483713558069674311 ~2011
177906731633558134632711 ~2011
Exponent Prime Factor Dig. Year
177908928113558178562311 ~2011
177918376433558367528711 ~2011
177920560913558411218311 ~2011
177923342513558466850311 ~2011
177929091113558581822311 ~2011
1779342167310676053003912 ~2012
1779455326110676731956712 ~2012
177950391833559007836711 ~2011
1779577278110677463668712 ~2012
177976803593559536071911 ~2011
177977953433559559068711 ~2011
177993721793559874435911 ~2011
178004578793560091575911 ~2011
1780062642128481002273712 ~2013
1780069792317800697923112 ~2013
1780109104317801091043112 ~2013
178020652793560413055911 ~2011
178026835793560536715911 ~2011
1780316317710681897906312 ~2012
1780332223114242657784912 ~2013
178042596016491...50524714 2023
178054923713561098474311 ~2011
178058441033561168820711 ~2011
178059565793561191315911 ~2011
178062882113561257642311 ~2011
Home
5.037.460 digits
e-mail
25-09-07