Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
270868961635417379232711 ~2012
270876758995417535179911 ~2012
270887530915417750618311 ~2012
270890209435417804188711 ~2012
2708916680965014000341712 ~2015
270902195995418043919911 ~2012
2709105760116254634560712 ~2014
270911804635418236092711 ~2012
270936042835418720856711 ~2012
270941353195418827063911 ~2012
2709506791121676054328912 ~2014
270957725035419154500711 ~2012
2709585210743353363371312 ~2015
270975688195419513763911 ~2012
270995726635419914532711 ~2012
2710010245316260061471912 ~2014
2710081434116260488604712 ~2014
271010513035420210260711 ~2012
271040691715420813834311 ~2012
271045557115420911142311 ~2012
271057346995421146939911 ~2012
2710971809316265830855912 ~2014
2711469183716268815102312 ~2014
2711526029921692208239312 ~2014
271176926035423538520711 ~2012
Exponent Prime Factor Dig. Year
271177141315423542826311 ~2012
271184426995423688539911 ~2012
271211415115424228302311 ~2012
271218321835424366436711 ~2012
2712345817965096299629712 ~2015
2712408429716274450578312 ~2014
271247428516862...41303114 2024
271251121915425022438311 ~2012
2712549370121700394960912 ~2014
2712662653721701301229712 ~2014
271270791835425415836711 ~2012
271296484315425929686311 ~2012
271299479515425989590311 ~2012
2713090221716278541330312 ~2014
2713177461716279064770312 ~2014
271326641515426532830311 ~2012
271330551235426611024711 ~2012
271349037595426980751911 ~2012
271349183515426983670311 ~2012
271363066795427261335911 ~2012
271384697515427693950311 ~2012
271394118115427882362311 ~2012
271394772235427895444711 ~2012
271406662915428133258311 ~2012
2714165830116284994980712 ~2014
Exponent Prime Factor Dig. Year
271429564795428591295911 ~2012
2714485326143431765217712 ~2015
271448805835428976116711 ~2012
271457253715429145074311 ~2012
271459138435429182768711 ~2012
271462379995429247599911 ~2012
2714827242116288963452712 ~2014
271489587235429791744711 ~2012
271525747915430514958311 ~2012
2715281755716291690534312 ~2014
271530180715430603614311 ~2012
2715461230116292767380712 ~2014
271548684835430973696711 ~2012
271551930012260...92632715 2023
271559621995431192439911 ~2012
271572785035431455700711 ~2012
271573735915431474718311 ~2012
2715899269121727194152912 ~2014
271600658995432013179911 ~2013
2716016770721728134165712 ~2014
271607767195432155343911 ~2013
271615090315432301806311 ~2013
271638346795432766935911 ~2013
2716403012921731224103312 ~2014
271642669315432853386311 ~2013
Exponent Prime Factor Dig. Year
2716450680116298704080712 ~2014
271650655795433013115911 ~2013
2716795548727167955487112 ~2014
271680606595433612131911 ~2013
271688740915433774818311 ~2013
271699087195433981743911 ~2013
2717133523738039869331912 ~2015
271728768595434575371911 ~2013
2717362960116304177760712 ~2014
271748274835434965496711 ~2013
271756047835435120956711 ~2013
271777910515435558210311 ~2013
271778020315435560406311 ~2013
271780814995435616299911 ~2013
2717849370116307096220712 ~2014
271791660115435833202311 ~2013
2717951409143487222545712 ~2015
2718086727127180867271112 ~2014
2718150877121745207016912 ~2014
2718197821121745582568912 ~2014
2718311339316309868035912 ~2014
2718367317716310203906312 ~2014
271838658835436773176711 ~2013
271844967115436899342311 ~2013
2718561717716311370306312 ~2014
Home
4.888.230 digits
e-mail
25-06-29