Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
97355731191947114623911 ~2009
97358713911947174278311 ~2009
97369540791947390815911 ~2009
97369629711947392594311 ~2009
97369841335842190479911 ~2010
97371804831947436096711 ~2009
97371868639737186863111 ~2011
97373377191947467543911 ~2009
97387666431947753328711 ~2009
973884207738955368308112 ~2012
97393652535843619151911 ~2010
97398487911947969758311 ~2009
974001012115584016193712 ~2011
974030866725324802534312 ~2012
97405222191948104443911 ~2009
97408617711948172354311 ~2009
97409355111948187102311 ~2009
97411947831948238956711 ~2009
97412724231948254484711 ~2009
97417166577793373325711 ~2011
97423300791948466015911 ~2009
97426279431948525588711 ~2009
97427647975845658878311 ~2010
97431811311948636226311 ~2009
97436219631948724392711 ~2009
Exponent Prime Factor Dig. Year
97437391519743739151111 ~2011
974378474923385083397712 ~2012
97440903711948818074311 ~2009
97442992677795439413711 ~2011
97444474311948889486311 ~2009
97451236911949024738311 ~2009
97452110391949042207911 ~2009
97455098631949101972711 ~2009
97457022231949140444711 ~2009
97458073911949161478311 ~2009
97466437639746643763111 ~2011
97474906191949498123911 ~2009
97481228991949624579911 ~2009
97489071231949781424711 ~2009
97491305575849478334311 ~2010
97494051111949881022311 ~2009
97494704775849682286311 ~2010
97495481631949909632711 ~2009
97504837311950096746311 ~2009
97514676111950293522311 ~2009
97519242231950384844711 ~2009
97521063591950421271911 ~2009
97521129831950422596711 ~2009
97522340991950446819911 ~2009
97525638111950512762311 ~2009
Exponent Prime Factor Dig. Year
97529516511950590330311 ~2009
97533747231950674944711 ~2009
97533866631950677332711 ~2009
97536566511950731330311 ~2009
97538116311950762326311 ~2009
97540609191950812183911 ~2009
97545004017803600320911 ~2011
97548828831950976576711 ~2009
97548918231950978364711 ~2009
975498025315607968404912 ~2011
97551753591951035071911 ~2009
97552008111951040162311 ~2009
97556627511951132550311 ~2009
97563235197805058815311 ~2011
97563365991951267319911 ~2009
975641428929269242867112 ~2012
97566141111951322822311 ~2009
97569512775854170766311 ~2010
975714892315611438276912 ~2011
97572574791951451495911 ~2009
97574043231951480864711 ~2009
975779900325370277407912 ~2012
97578067311951561346311 ~2009
97578372831951567456711 ~2009
97580558031951611160711 ~2009
Exponent Prime Factor Dig. Year
97582333431951646668711 ~2009
97585057191951701143911 ~2009
97592689191951853783911 ~2009
97592889711951857794311 ~2009
97594658511951893170311 ~2009
97597329591951946591911 ~2009
97600180015856010800711 ~2010
97600531677808042533711 ~2011
97603697991952073959911 ~2009
97603921135856235267911 ~2010
97608404031952168080711 ~2009
976128106315618049700912 ~2011
97612846791952256935911 ~2009
97622688711952453774311 ~2009
97625927535857555651911 ~2010
97629863391952597267911 ~2009
97633617111952672342311 ~2009
97636923535858215411911 ~2010
976380855723433140536912 ~2012
97640818135858449087911 ~2010
97650540111953010802311 ~2009
976523955723436574936912 ~2012
97659116511953182330311 ~2009
97663686591953273731911 ~2009
97669727031953394540711 ~2009
Home
5.157.210 digits
e-mail
25-11-02