Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
325164857516503297150311 ~2013
325208099036504161980711 ~2013
325209297236504185944711 ~2013
325235931836504718636711 ~2013
325260288236505205764711 ~2013
325275921596505518431911 ~2013
325292238716505844774311 ~2013
3252926904119517561424712 ~2014
3253033627378072807055312 ~2016
3253040497126024323976912 ~2015
325307481116506149622311 ~2013
325330993316506619866311 ~2013
325334506571561...31536114 2023
325335261836506705236711 ~2013
3253478537319520871223912 ~2014
325348058516506961170311 ~2013
3253628925719521773554312 ~2014
325383875036507677500711 ~2013
325413103316508262066311 ~2013
325440691436508813828711 ~2013
325445374796508907495911 ~2013
325445428796508908575911 ~2013
325445544596508910891911 ~2013
325456900916509138018311 ~2013
3254638209752074211355312 ~2015
Exponent Prime Factor Dig. Year
3254752089719528512538312 ~2014
325482492716509649854311 ~2013
325489676636509793532711 ~2013
3255214657319531287943912 ~2014
3255733693745580271711912 ~2015
3255845881726046767053712 ~2015
325629462716512589254311 ~2013
325645783796512915675911 ~2013
3256531351319539188107912 ~2014
325723738196514474763911 ~2013
325723932116514478642311 ~2013
325726009196514520183911 ~2013
325743860636514877212711 ~2013
325745240636514904812711 ~2013
325760285036515205700711 ~2013
325768431716515368634311 ~2013
3257882380119547294280712 ~2014
3258091896119548551376712 ~2014
3258200824726065606597712 ~2015
325845353636516907072711 ~2013
325855750796517115015911 ~2013
325856668196517133363911 ~2013
325856780036517135600711 ~2013
3258671481719552028890312 ~2014
325873201316517464026311 ~2013
Exponent Prime Factor Dig. Year
3258821460119552928760712 ~2014
3259024380119554146280712 ~2014
3259041383319554248299912 ~2014
3259089508726072716069712 ~2015
325940586716518811734311 ~2013
325958182916519163658311 ~2013
325958497196519169943911 ~2013
3259635040119557810240712 ~2014
3259635735719557814414312 ~2014
325966749836519334996711 ~2013
325990869596519817391911 ~2013
326009569196520191383911 ~2013
326033936396520678727911 ~2013
3260467858119562807148712 ~2014
326049098996520981979911 ~2013
326067485396521349707911 ~2013
326074985036521499700711 ~2013
326077789436521555788711 ~2013
326094755516521895110311 ~2013
326112538196522250763911 ~2013
326133289916522665798311 ~2013
3261353587352181657396912 ~2015
3261407472119568444832712 ~2014
3261407824119568446944712 ~2014
3261580108726092640869712 ~2015
Exponent Prime Factor Dig. Year
3261590398726092723189712 ~2015
3261936432119571618592712 ~2014
326197203836523944076711 ~2013
326201104436524022088711 ~2013
326210601596524212031911 ~2013
326217900116524358002311 ~2013
3262288125752196610011312 ~2015
326238045116524760902311 ~2013
326239919036524798380711 ~2013
326254527716525090554311 ~2013
326315564396526311287911 ~2013
326320229636526404592711 ~2013
3263385994119580315964712 ~2014
3263682539319582095235912 ~2014
3263998603726111988829712 ~2015
326434925036528698500711 ~2013
326462690636529253812711 ~2013
326466661196529333223911 ~2013
326470528436529410568711 ~2013
326504271236530085424711 ~2013
326504693036530093860711 ~2013
3265312667319591876003912 ~2014
3265466266119592797596712 ~2014
3265620097126124960776912 ~2015
326569798796531395975911 ~2013
Home
4.724.182 digits
e-mail
25-04-13