Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
1946663864346719932743312 ~2014
1946713239746721117752912 ~2014
1946775654111680653924712 ~2013
194687209193893744183911 ~2011
194699145713893982914311 ~2011
1947037025311682222151912 ~2013
194707522433894150448711 ~2011
194714447633894288952711 ~2011
194722395713894447914311 ~2011
194723577113894471542311 ~2011
194739112793894782255911 ~2011
194739648713894792974311 ~2011
194743473833894869476711 ~2011
1947460770111684764620712 ~2013
1947527821977901112876112 ~2015
194763702113895274042311 ~2011
194770226993895404539911 ~2011
194778965633895579312711 ~2011
194779792313895595846311 ~2011
194792230793895844615911 ~2011
1947924028111687544168712 ~2013
194795182913895903658311 ~2011
1948025401115584203208912 ~2013
1948131862942858900983912 ~2014
194815343993896306879911 ~2011
Exponent Prime Factor Dig. Year
194817722033896354440711 ~2011
1948300730915586405847312 ~2013
1948534849727279487895912 ~2013
1948790093311692740559912 ~2013
1948917034111693502204712 ~2013
1948982809715591862477712 ~2013
194905671113898113422311 ~2011
194927909393898558187911 ~2011
1949453383311696720299912 ~2013
194955073793899101475911 ~2011
194960904233899218084711 ~2011
1949612575715596900605712 ~2013
194974394993899487899911 ~2011
194979072113899581442311 ~2011
194983634633899672692711 ~2011
195011575193900231503911 ~2011
1950280573711701683442312 ~2013
195051982913901039658311 ~2011
1950521028111703126168712 ~2013
195081656393901633127911 ~2011
195088375913901767518311 ~2011
195099797993901995959911 ~2011
195109521713902190434311 ~2011
195112459913902249198311 ~2011
195113362193902267243911 ~2011
Exponent Prime Factor Dig. Year
195114706913902294138311 ~2011
195115189793902303795911 ~2011
1951444379946834665117712 ~2014
195162551513903251030311 ~2011
1951722733711710336402312 ~2013
195179947193903598943911 ~2011
195198257633903965152711 ~2011
195203137793904062755911 ~2011
1952069262735137246728712 ~2014
1952233954111713403724712 ~2013
195234939713904698794311 ~2011
195243858233904877164711 ~2011
195244230593904884611911 ~2011
1952445652115619565216912 ~2013
195250803593905016071911 ~2011
195259578593905191571911 ~2011
195261285713905225714311 ~2011
195264407513905288150311 ~2011
195275495993905509919911 ~2011
195285416033905708320711 ~2011
195295280993905905619911 ~2011
195299266793905985335911 ~2011
195305109593906102191911 ~2011
195317806793906356135911 ~2011
195336103913906722078311 ~2011
Exponent Prime Factor Dig. Year
1953368775711720212654312 ~2013
195339380033906787600711 ~2011
195339626033906792520711 ~2011
195356005433907120108711 ~2011
195359058713907181174311 ~2011
1953619824735165156844712 ~2014
1953677191331258835060912 ~2014
195384781193907695623911 ~2011
195385136513907702730311 ~2011
195400222793908004455911 ~2011
1954060837135173095067912 ~2014
195412328633908246572711 ~2011
1954269193311725615159912 ~2013
195428313593908566271911 ~2011
195439198193908783963911 ~2011
195440668193908813363911 ~2011
195451703033909034060711 ~2011
195468257993909365159911 ~2011
195479864393909597287911 ~2011
1954801206111728807236712 ~2013
195482835713909656714311 ~2011
1954847179727367860515912 ~2013
195509021091376...08473714 2023
195514226033910284520711 ~2011
195515620313910312406311 ~2011
Home
4.888.230 digits
e-mail
25-06-29