Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
153635614313072712286311 ~2011
153639763193072795263911 ~2011
153649064393072981287911 ~2011
153656445833073128916711 ~2011
153656936633073138732711 ~2011
1536613880336878733127312 ~2013
153667776593073355531911 ~2011
1536788112715367881127112 ~2012
153680835833073616716711 ~2011
153682748513073654970311 ~2011
1536881704712295053637712 ~2012
153695828033073916560711 ~2011
153702377339222142639911 ~2012
153705722939222343375911 ~2012
1537116727112296933816912 ~2012
1537135363915371353639112 ~2012
153714332513074286650311 ~2011
153714350993074287019911 ~2011
153715326233074306524711 ~2011
153721447793074428955911 ~2011
153728289833074565796711 ~2011
153732283739223937023911 ~2012
153743932619224635956711 ~2012
153748040993074960819911 ~2011
153759867713075197354311 ~2011
Exponent Prime Factor Dig. Year
1537659835721527237699912 ~2013
153771658193075433163911 ~2011
153774535193075490703911 ~2011
153777290993075545819911 ~2011
153779105633075582112711 ~2011
153783609113075672182311 ~2011
1537890805927682034506312 ~2013
1537944036124607104577712 ~2013
1537957411712303659293712 ~2012
1537967472124607479553712 ~2013
153805238539228314311911 ~2012
153806595739228395743911 ~2012
153813293939228797635911 ~2012
153813523913076270478311 ~2011
153814117193076282343911 ~2011
153815824793076316495911 ~2011
1538163499964602866995912 ~2014
153818891291353...43352114 2023
153819702233076394044711 ~2011
153829244993076584899911 ~2011
153834532433076690648711 ~2011
1538363166724613810667312 ~2013
153836634113076732682311 ~2011
153837991619230279496711 ~2012
153838355579230301334311 ~2012
Exponent Prime Factor Dig. Year
153839385539230363131911 ~2012
153850389833077007796711 ~2011
153851697713077033954311 ~2011
153856380833077127616711 ~2011
153856702313077134046311 ~2011
153864527513077290550311 ~2011
153867235433077344708711 ~2011
153876314393077526287911 ~2011
153882137513077642750311 ~2011
153882515339232950919911 ~2012
153890177393077803547911 ~2011
1539005478161560219124112 ~2014
1539094004921547316068712 ~2013
153909456779234567406311 ~2012
153909943793078198875911 ~2011
153911352139234681127911 ~2012
153913863593078277271911 ~2011
153925976393078519527911 ~2011
1539275107140021152784712 ~2013
153937664033078753280711 ~2011
153942249979236534998311 ~2012
1539440809712315526477712 ~2012
153959094113079181882311 ~2011
1539637568912317100551312 ~2012
153967282193079345643911 ~2011
Exponent Prime Factor Dig. Year
153970504793079410095911 ~2011
153980837633079616752711 ~2011
153982072433079641448711 ~2011
153983267633079665352711 ~2011
153994103993079882079911 ~2011
153996498233079929964711 ~2011
154001791913080035838311 ~2011
1540021651112320173208912 ~2012
154002835433080056708711 ~2011
154005121193080102423911 ~2011
154009749833080194996711 ~2011
154011070193080221403911 ~2011
1540214715124643435441712 ~2013
154028104913080562098311 ~2011
154029243713080584874311 ~2011
154031300633080626012711 ~2011
154036915313080738306311 ~2011
154064540393081290807911 ~2011
154065183833081303676711 ~2011
154066456793081329135911 ~2011
154072724033081454480711 ~2011
154077531833081550636711 ~2011
154078420913081568418311 ~2011
1540792777112326342216912 ~2012
154085800219245148012711 ~2012
Home
4.888.230 digits
e-mail
25-06-29