Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
97039942575822396554311 ~2010
970433812921349543883912 ~2012
97051012911941020258311 ~2009
97053565191941071303911 ~2009
970576789979587296771912 ~2013
97060191711941203834311 ~2009
97060872111941217442311 ~2009
97063920111941278402311 ~2009
97068972831941379456711 ~2009
97070371335824222279911 ~2010
97071680991941433619911 ~2009
97072232575824333954311 ~2010
97072889335824373359911 ~2010
97073126031941462520711 ~2009
97074130431941482608711 ~2009
97075731591941514631911 ~2009
97077786831941555736711 ~2009
97078300615824698036711 ~2010
970823971923299775325712 ~2012
97088974791941779495911 ~2009
97094722311941894446311 ~2009
97096059597767684767311 ~2010
97101895791942037915911 ~2009
97102031031942040620711 ~2009
97105151631942103032711 ~2009
Exponent Prime Factor Dig. Year
97106310711942126214311 ~2009
97108024677768641973711 ~2010
97110808377768864669711 ~2010
97118870511942377410311 ~2009
97118964231942379284711 ~2009
97122062719712206271111 ~2011
97123280817769862464911 ~2010
97128033231942560664711 ~2009
971314726746623106881712 ~2012
97133176431942663528711 ~2009
97134026415828041584711 ~2010
97135611831942712236711 ~2009
97136100175828166010311 ~2010
97136151117770892088911 ~2010
97136924511942738490311 ~2009
97140101991942802039911 ~2009
97142049591942840991911 ~2009
97148593311942971866311 ~2009
97151751111943035022311 ~2009
97158297711943165954311 ~2009
97160901711943218034311 ~2009
97176747199717674719111 ~2011
97178875135830732507911 ~2010
97179483775830769026311 ~2010
97181626911943632538311 ~2009
Exponent Prime Factor Dig. Year
97183518591943670371911 ~2009
971849086946648756171312 ~2012
97193284911943865698311 ~2009
97195488591943909771911 ~2009
971976193736935095360712 ~2012
97199812791943996255911 ~2009
97206819831944136396711 ~2009
97207682031944153640711 ~2009
97216503975832990238311 ~2010
97220317191944406343911 ~2009
97222352277777788181711 ~2010
97223599311944471986311 ~2009
972302306929169069207112 ~2012
97237492791944749855911 ~2009
97254461031945089220711 ~2009
97261073991945221479911 ~2009
97262053431945241068711 ~2009
97265384031945307680711 ~2009
97268133591945362671911 ~2009
97268560911945371218311 ~2009
97268576031945371520711 ~2009
97271289231945425784711 ~2009
97273556631945471132711 ~2009
97280610439728061043111 ~2011
97280698311945613966311 ~2009
Exponent Prime Factor Dig. Year
97281114897782489191311 ~2011
97282082511945641650311 ~2009
97282560777782604861711 ~2011
97283690991945673819911 ~2009
97297153215837829192711 ~2010
973014345744758659902312 ~2012
97306915077784553205711 ~2011
97310892231946217844711 ~2009
97311396231946227924711 ~2009
97314846111946296922311 ~2009
97315500711946310014311 ~2009
97315948911946318978311 ~2009
973181091117517259639912 ~2011
973207704129196231123112 ~2012
97321654791946433095911 ~2009
97322769231946455384711 ~2009
97324880631946497612711 ~2009
97325491191946509823911 ~2009
97332205311946644106311 ~2009
97334126217786730096911 ~2011
97335509511946710190311 ~2009
97337288391946745767911 ~2009
97340618031946812360711 ~2009
97346927391946938547911 ~2009
97349872017787989760911 ~2011
Home
5.157.210 digits
e-mail
25-11-02