Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
151996882913039937658311 ~2011
152006066393040121327911 ~2011
152010871793040217435911 ~2011
152014657913040293158311 ~2011
152015079113040301582311 ~2011
1520169560912161356487312 ~2012
152021260313040425206311 ~2011
152021436113040428722311 ~2011
152030402633040608052711 ~2011
152035363433040707268711 ~2011
152036105993040722119911 ~2011
152039768393040795367911 ~2011
1520416109912163328879312 ~2012
152052405179123144310311 ~2012
152052924713041058494311 ~2011
152058228233041164564711 ~2011
152059221593041184431911 ~2011
1520628246124330051937712 ~2013
152062969979123778198311 ~2012
152074427513041488550311 ~2011
152078011313041560226311 ~2011
152081784233041635684711 ~2011
152086030793041720615911 ~2011
1520882118133459406598312 ~2013
152092912313041858246311 ~2011
Exponent Prime Factor Dig. Year
152093874233041877484711 ~2011
152114711393042294227911 ~2011
1521160249112169281992912 ~2012
152116723193042334463911 ~2011
152118243593042364871911 ~2011
152123195993042463919911 ~2011
152127250193042545003911 ~2011
152147557913042951158311 ~2011
152147840033042956800711 ~2011
152175343313043506866311 ~2011
152175659393043513187911 ~2011
152177615633043552312711 ~2011
152181304433043626088711 ~2011
152183560313043671206311 ~2011
152195806433043916128711 ~2011
152198209619131892576711 ~2012
152198603532155...25984914 2023
152200070633044001412711 ~2011
1522260771115222607711112 ~2012
152226869393044537387911 ~2011
1522310653336535455679312 ~2013
152232727193044654543911 ~2011
1522415697770031122094312 ~2014
152258588993045171779911 ~2011
152273930633045478612711 ~2011
Exponent Prime Factor Dig. Year
152274264113045485282311 ~2011
152284221179137053270311 ~2012
1522855823963959944603912 ~2014
152293318913045866378311 ~2011
152301717833046034356711 ~2011
152313732113046274642311 ~2011
152314491113046289822311 ~2011
152315955593046319111911 ~2011
152318163713046363274311 ~2011
152321185913046423718311 ~2011
152328470339139708219911 ~2012
152331066593046621331911 ~2011
152334563633046691272711 ~2011
1523401971115234019711112 ~2012
152341732313046834646311 ~2011
1523423395712187387165712 ~2012
1523529943927423538990312 ~2013
1523679034315236790343112 ~2012
152370257993047405159911 ~2011
152378165633047563312711 ~2011
152378893793047577875911 ~2011
152381109113047622182311 ~2011
1523876926112191015408912 ~2012
1523931885115239318851112 ~2012
1523966900936575205621712 ~2013
Exponent Prime Factor Dig. Year
1524005046724384080747312 ~2013
152401137833048022756711 ~2011
1524045223360961808932112 ~2014
152404996193048099923911 ~2011
152405417179144325030311 ~2012
1524128156912193025255312 ~2012
152417129393048342587911 ~2011
152418616819145117008711 ~2012
152432996393048659927911 ~2011
152433962633048679252711 ~2011
152435845913048716918311 ~2011
152464876433049297528711 ~2011
152471852633049437052711 ~2011
152483754979149025298311 ~2012
152484812633049696252711 ~2011
152485120339149107219911 ~2012
152485913779149154826311 ~2012
152487377993049747559911 ~2011
152487407393049748147911 ~2011
152488089979149285398311 ~2012
152503285193050065703911 ~2011
152507390393050147807911 ~2011
152509698593050193971911 ~2011
152537913233050758264711 ~2011
152538554393050771087911 ~2011
Home
4.888.230 digits
e-mail
25-06-29