Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
278142952795562859055911 ~2013
2781444587316688667523912 ~2014
2782071551316692429307912 ~2014
278220273235564405464711 ~2013
278223804835564476096711 ~2013
278241117235564822344711 ~2013
278249181235564983624711 ~2013
278254403395565088067911 ~2013
2782550166116695300996712 ~2014
278290100395565802007911 ~2013
278297462995565949259911 ~2013
278306314315566126286311 ~2013
278316753595566335071911 ~2013
278358702595567174051911 ~2013
2783591113316701546679912 ~2014
278367199195567343983911 ~2013
2783852897922270823183312 ~2014
278417413315568348266311 ~2013
278439782515568795650311 ~2013
278450519995569010399911 ~2013
278454405835569088116711 ~2013
2784581137716707486826312 ~2014
2784621170938984696392712 ~2015
278480355115569607102311 ~2013
278488344115569766882311 ~2013
Exponent Prime Factor Dig. Year
278524425115570488502311 ~2013
278525503435570510068711 ~2013
2785401103716712406622312 ~2014
2785427163127854271631112 ~2014
278562255715571245114311 ~2013
2785658818116713952908712 ~2014
2785698628122285589024912 ~2014
2785705967922285647743312 ~2014
2785719453716714316722312 ~2014
2785825043922286600351312 ~2014
2785975166922287801335312 ~2014
2786185720122289485760912 ~2014
278625317995572506359911 ~2013
2786283016116717698096712 ~2014
2786285104116717710624712 ~2014
278648061115572961222311 ~2013
278650803115573016062311 ~2013
278655149515573102990311 ~2013
2786656240772453062258312 ~2015
278678550235573571004711 ~2013
278695587072636...53682314 2023
278700198115574003962311 ~2013
278717897635574357952711 ~2013
278718411835574368236711 ~2013
278733667435574673348711 ~2013
Exponent Prime Factor Dig. Year
2787356957316724141743912 ~2014
278750399035575007980711 ~2013
278755687195575113743911 ~2013
2787745597950179420762312 ~2015
278777778835575555576711 ~2013
2787794281950180297074312 ~2015
278813215435576264308711 ~2013
278816940235576338804711 ~2013
278842318915576846378311 ~2013
278850444715577008894311 ~2013
278868351115577367022311 ~2013
278878858915577577178311 ~2013
278879189635577583792711 ~2013
278905047835578100956711 ~2013
278919682435578393648711 ~2013
2789391491316736348947912 ~2014
278947982035578959640711 ~2013
278971163635579423272711 ~2013
278974374115579487482311 ~2013
2789957803966958987293712 ~2015
279000731995580014639911 ~2013
279014081035580281620711 ~2013
279016286035580325720711 ~2013
279016324315580326486311 ~2013
2790442075716742652454312 ~2014
Exponent Prime Factor Dig. Year
279048100795580962015911 ~2013
279065295595581305911911 ~2013
2790726170922325809367312 ~2014
2790948465744655175451312 ~2015
279095783035581915660711 ~2013
2791006591344656105460912 ~2015
279114895637011...78225714 2023
2791267009927912670099112 ~2014
279129709795582594195911 ~2013
279141303235582826064711 ~2013
2791428223316748569339912 ~2014
2791439624922331516999312 ~2014
279149482915582989658311 ~2013
279153676435583073528711 ~2013
279154536235583090724711 ~2013
279160440595583208811911 ~2013
279171374035583427480711 ~2013
279174600235583492004711 ~2013
279181131835583622636711 ~2013
2791908423127919084231112 ~2014
279191319835583826396711 ~2013
279191972035583839440711 ~2013
2792013474116752080844712 ~2014
279224137315584482746311 ~2013
279240668995584813379911 ~2013
Home
4.724.182 digits
e-mail
25-04-13