Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
152559843713051196874311 ~2011
1525738743724411819899312 ~2013
152583547913051670958311 ~2011
152584236713051684734311 ~2011
152590579939155434795911 ~2012
152595460793051909215911 ~2011
1525957800751882565223912 ~2014
152600080193052001603911 ~2011
152601820819156109248711 ~2012
152606468393052129367911 ~2011
152607152513052143050311 ~2011
152632852379157971142311 ~2012
1526345515915263455159112 ~2012
152635655393052713107911 ~2011
1526379097915263790979112 ~2012
152646688433052933768711 ~2011
152649863513052997270311 ~2011
1526507388133583162538312 ~2013
152651361019159081660711 ~2012
152651552033053031040711 ~2011
152653233713053064674311 ~2011
152694327713053886554311 ~2011
152697861179161871670311 ~2012
152699184593053983691911 ~2011
152707252193054145043911 ~2011
Exponent Prime Factor Dig. Year
152729906513054598130311 ~2011
152730290393054605807911 ~2011
152737807193054756143911 ~2011
152748772793054975455911 ~2011
1527519349712220154797712 ~2012
152753674793055073495911 ~2011
1527576453127496376155912 ~2013
152761798793055235975911 ~2011
152768526113055370522311 ~2011
152769266633055385332711 ~2011
1527702067915277020679112 ~2012
152771886539166313191911 ~2012
152779577633055591552711 ~2011
152785410233055708204711 ~2011
1527956215915279562159112 ~2012
152799231593055984631911 ~2011
152799719393055994387911 ~2011
152800913993056018279911 ~2011
152805024019168301440711 ~2012
152818762433056375248711 ~2011
152820161633056403232711 ~2011
152825948633056518972711 ~2011
152834197793056683955911 ~2011
152840855393056817107911 ~2011
152843426633056868532711 ~2011
Exponent Prime Factor Dig. Year
152854462793057089255911 ~2011
152859118313057182366311 ~2011
152862480233057249604711 ~2011
152864069033057281380711 ~2011
152866562393057331247911 ~2011
152887885193057757703911 ~2011
1528892430715288924307112 ~2012
1529011664912232093319312 ~2012
152906667179174400030311 ~2012
152912655233058253104711 ~2011
152912967713058259354311 ~2011
152914028033058280560711 ~2011
152916761993058335239911 ~2011
152917767713058355354311 ~2011
1529181142112233449136912 ~2012
1529199487721408792827912 ~2013
152920212739175212763911 ~2012
152926058513058521170311 ~2011
152929210433058584208711 ~2011
152931383033058627660711 ~2011
152941249313058824986311 ~2011
152950701233059014024711 ~2011
152951567633059031352711 ~2011
152952584633059051692711 ~2011
152952846379177170782311 ~2012
Exponent Prime Factor Dig. Year
152953765433059075308711 ~2011
152953810193059076203911 ~2011
152956613219177396792711 ~2012
152963444033059268880711 ~2011
152980437233059608744711 ~2011
152988295313059765906311 ~2011
152988330593059766611911 ~2011
153007498793060149975911 ~2011
153008587313060171746311 ~2011
153010895393060217907911 ~2011
153013743431677...27992914 2023
153014067233060281344711 ~2011
1530179557164267541398312 ~2014
153021508339181290499911 ~2012
1530280434736726730432912 ~2013
153035133833060702676711 ~2011
1530375516715303755167112 ~2012
153045671393060913427911 ~2011
153052699433061053988711 ~2011
153068821313061376426311 ~2011
153069169819184150188711 ~2012
1530705490712245643925712 ~2012
153074422313061488446311 ~2011
153077614313061552286311 ~2011
153084665219185079912711 ~2012
Home
4.888.230 digits
e-mail
25-06-29