Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
79679542431593590848711 ~2008
79680730334780843819911 ~2010
796845864727092759399912 ~2011
79685399631593707992711 ~2008
79685559711593711194311 ~2008
79694390631593887812711 ~2008
79696741431593934828711 ~2008
79697739231593954784711 ~2008
79698699831593973996711 ~2008
79699968711593999374311 ~2008
79711599296376927943311 ~2010
797117596719130822320912 ~2011
797134610930291115214312 ~2011
79717107231594342144711 ~2008
79717811774783068706311 ~2010
79718744991594374899911 ~2008
79719814997971981499111 ~2010
79725407391594508147911 ~2008
797254976911161569676712 ~2010
79727303511594546070311 ~2008
79728153416378252272911 ~2010
79730840396378467231311 ~2010
797309803133487011730312 ~2012
79737848574784270914311 ~2010
797419659112758714545712 ~2011
Exponent Prime Factor Dig. Year
79743539511594870790311 ~2008
79747852976379828237711 ~2010
79750755831595015116711 ~2008
79750876911595017538311 ~2008
79753664631595073292711 ~2008
79754891631595097832711 ~2008
79759856031595197120711 ~2008
79760630991595212619911 ~2008
79766243391595324867911 ~2008
79771420911595428418311 ~2008
79772370414786342224711 ~2010
79774561196381964895311 ~2010
79774760991595495219911 ~2008
79774993014786499580711 ~2010
79775341974786520518311 ~2010
797775046720742151214312 ~2011
79778956311595579126311 ~2008
79783297311595665946311 ~2008
79784295591595685911911 ~2008
79786117431595722348711 ~2008
79789249311595784986311 ~2008
79790395431595807908711 ~2008
79795019031595900380711 ~2008
79795365776383629261711 ~2010
79797664191595953283911 ~2008
Exponent Prime Factor Dig. Year
798045464911172636508712 ~2010
79805641311596112826311 ~2008
79806444111596128882311 ~2008
79808388231596167764711 ~2008
798087505312769400084912 ~2011
798106864714365923564712 ~2011
79810930191596218603911 ~2008
79812719991596254399911 ~2008
79814808176385184653711 ~2010
79816452711596329054311 ~2008
79819805774789188346311 ~2010
79821516231596430324711 ~2008
79822515591596450311911 ~2008
79822715511596454310311 ~2008
79824404414789464264711 ~2010
79824786591596495731911 ~2008
79828616511596572330311 ~2008
79834485134790069107911 ~2010
79835194374790111662311 ~2010
79836466911596729338311 ~2008
79838985111596779702311 ~2008
79839954831596799096711 ~2008
79849267911596985358311 ~2008
79850012391597000247911 ~2008
79853467311597069346311 ~2008
Exponent Prime Factor Dig. Year
79861271511597225430311 ~2008
79861463511597229270311 ~2008
79865389934791923395911 ~2010
79868390991597367819911 ~2008
79873683591597473671911 ~2008
79874487231597489744711 ~2008
79875066476390005317711 ~2010
79878400734792704043911 ~2010
79880159696390412775311 ~2010
79880401911597608038311 ~2008
79881936591597638731911 ~2008
79883276631597665532711 ~2008
79886226197988622619111 ~2010
79886756214793205372711 ~2010
79887019911597740398311 ~2008
79892762991597855259911 ~2008
798939061312783024980912 ~2011
79895730711597914614311 ~2008
79896918231597938364711 ~2008
79902855296392228423311 ~2010
799075834123972275023112 ~2011
79908667076392693365711 ~2010
79912108791598242175911 ~2008
79912635374794758122311 ~2010
79913626196393090095311 ~2010
Home
4.888.230 digits
e-mail
25-06-29