Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
96710397231934207944711 ~2009
96710479311934209586311 ~2009
96715663191934313263911 ~2009
967227931315475646900912 ~2011
96725115591934502311911 ~2009
96725273631934505472711 ~2009
96734603991934692079911 ~2009
96736367817738909424911 ~2010
96737132277738970581711 ~2010
967395250315478324004912 ~2011
96743146191934862923911 ~2009
96751381311935027626311 ~2009
96756592911935131858311 ~2009
967579080115481265281712 ~2011
96760446111935208922311 ~2009
96767256735806035403911 ~2010
96774291175806457470311 ~2010
96779007231935580144711 ~2009
96779239431935584788711 ~2009
96779531511935590630311 ~2009
96781832391935636647911 ~2009
96783125991935662519911 ~2009
96791741517743339320911 ~2010
96792641631935852832711 ~2009
96793750311935875006311 ~2009
Exponent Prime Factor Dig. Year
96802265877744181269711 ~2010
968036943729041108311112 ~2012
96804516591936090331911 ~2009
96804635991936092719911 ~2009
96808637391936172747911 ~2009
96809121417744729712911 ~2010
96811850511936237010311 ~2009
96817131135809027867911 ~2010
96820770111936415402311 ~2009
96822913191936458263911 ~2009
968269808325175015015912 ~2012
96834980175810098810311 ~2010
96836553297746924263311 ~2010
96838075791936761515911 ~2009
968403668363914642107912 ~2013
96851080911937021618311 ~2009
96852595791937051915911 ~2009
96856311711937126234311 ~2009
96864167631937283352711 ~2009
96865755831937315116711 ~2009
96872353911937447078311 ~2009
96874214415812452864711 ~2010
968758207713562614907912 ~2011
96878651631937573032711 ~2009
96882012831937640256711 ~2009
Exponent Prime Factor Dig. Year
96888521391937770427911 ~2009
96890403231937808064711 ~2009
96891870831937837416711 ~2009
96894340575813660434311 ~2010
96900852111938017042311 ~2009
96904063311938081266311 ~2009
96910999911938219998311 ~2009
96912538791938250775911 ~2009
96926346831938526936711 ~2009
96926929791938538595911 ~2009
96928441311938568826311 ~2009
96931325175815879510311 ~2010
96935939631938718792711 ~2009
969360057115509760913712 ~2011
96944802831938896056711 ~2009
96950632215817037932711 ~2010
96954403791939088075911 ~2009
96958619631939172392711 ~2009
969676866732969013467912 ~2012
96968308399696830839111 ~2011
969686523115514984369712 ~2011
96968708991939374179911 ~2009
96970552431939411048711 ~2009
96972728991939454579911 ~2009
96974117415818447044711 ~2010
Exponent Prime Factor Dig. Year
96974573031939491460711 ~2009
96976188831939523776711 ~2009
96992032575819521954311 ~2010
96995602431939912048711 ~2009
97002804775820168286311 ~2010
970132798923283187173712 ~2012
97022343175821340590311 ~2010
97025067177762005373711 ~2010
97030202511940604050311 ~2009
97039942575822396554311 ~2010
970433812921349543883912 ~2012
97051012911941020258311 ~2009
97053565191941071303911 ~2009
97060191711941203834311 ~2009
97060872111941217442311 ~2009
97063920111941278402311 ~2009
97068972831941379456711 ~2009
97070371335824222279911 ~2010
97071680991941433619911 ~2009
97072232575824333954311 ~2010
97072889335824373359911 ~2010
97073126031941462520711 ~2009
97074130431941482608711 ~2009
97075731591941514631911 ~2009
97077786831941555736711 ~2009
Home
4.724.182 digits
e-mail
25-04-13