Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
79913887311598277746311 ~2008
799145852938359000939312 ~2012
79915878231598317564711 ~2008
79916229111598324582311 ~2008
79916632877991663287111 ~2010
79919258574795155514311 ~2010
79920942677992094267111 ~2010
79922476911598449538311 ~2008
79925295111598505902311 ~2008
799274168943160805120712 ~2012
79931121111598622422311 ~2008
79936318431598726368711 ~2008
79939251711598785034311 ~2008
79941655191598833103911 ~2008
79946624511598932490311 ~2008
799576193311194066706312 ~2010
79959889911599197798311 ~2008
79962204831599244096711 ~2008
79966103876397288309711 ~2010
79966144196397291535311 ~2010
79966994214798019652711 ~2010
79972889631599457792711 ~2008
79973387991599467759911 ~2008
79983509631599670192711 ~2008
79989337791599786755911 ~2008
Exponent Prime Factor Dig. Year
79989668511599793370311 ~2008
79990406534799424391911 ~2010
79995386631599907732711 ~2008
80000081991600001639911 ~2008
80000499711600009994311 ~2008
800007879712800126075312 ~2011
80001093111600021862311 ~2008
80001964934800117895911 ~2010
80002532031600050640711 ~2008
800052660124001579803112 ~2011
80009277711600185554311 ~2008
800177037719204248904912 ~2011
800207098157614911063312 ~2012
80021526591600430531911 ~2008
80024320431600486408711 ~2008
80033215976402657277711 ~2010
80043294231600865884711 ~2008
80045697111600913942311 ~2008
80046335511600926710311 ~2008
80047083111600941662311 ~2008
800489048344827386704912 ~2012
80050823391601016467911 ~2008
80053287591601065751911 ~2008
80057413431601148268711 ~2008
80057806191601156123911 ~2008
Exponent Prime Factor Dig. Year
80062007396404960591311 ~2010
80064253791601285075911 ~2008
80066180031601323600711 ~2008
80066509791601330195911 ~2008
80067261374804035682311 ~2010
80076564831601531296711 ~2008
80077659711601553194311 ~2008
80078483631601569672711 ~2008
80081733111601634662311 ~2008
80086553216406924256911 ~2010
80090594534805435671911 ~2010
801026830312816429284912 ~2011
80103570111602071402311 ~2008
801043111319225034671312 ~2011
80122211031602444220711 ~2008
80125707711602514154311 ~2008
80126214711602524294311 ~2008
80126486391602529727911 ~2008
80128723911602574478311 ~2008
80131520334807891219911 ~2010
80131712511602634250311 ~2008
80132584191602651683911 ~2008
80133906831602678136711 ~2008
801346266136861928240712 ~2012
80135106414808106384711 ~2010
Exponent Prime Factor Dig. Year
80136371838013637183111 ~2010
80139130496411130439311 ~2010
80139728991602794579911 ~2008
80144293431602885868711 ~2008
80145568638014556863111 ~2010
80148998391602979967911 ~2008
80149290176411943213711 ~2010
80149944231602998884711 ~2008
80150541711603010834311 ~2008
80152858911603057178311 ~2008
80154595791603091915911 ~2008
80156532774809391966311 ~2010
80158870791603177415911 ~2008
80165799711603315994311 ~2008
80166673878016667387111 ~2010
80167486431603349728711 ~2008
801728647140086432355112 ~2012
80177419334810645159911 ~2010
80178870711603577414311 ~2008
80181202191603624043911 ~2008
80182663911603653278311 ~2008
80182923711603658474311 ~2008
80187287991603745759911 ~2008
80189583231603791664711 ~2008
80189979134811398747911 ~2010
Home
4.888.230 digits
e-mail
25-06-29