Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
79383737991587674759911 ~2008
79385594391587711887911 ~2008
79386887574763213254311 ~2009
79388364591587767291911 ~2008
79388624396351089951311 ~2010
79389639111587792782311 ~2008
793941466714290946400712 ~2011
79401560117940156011111 ~2010
79406198031588123960711 ~2008
79409158191588183163911 ~2008
794131276312706100420912 ~2011
79420401591588408031911 ~2008
794251801914296532434312 ~2011
79425213134765512787911 ~2009
79428209996354256799311 ~2010
79430016591588600331911 ~2008
79435503831588710076711 ~2008
79439031296355122503311 ~2010
79439769614766386176711 ~2009
79442007831588840156711 ~2008
79444725591588894511911 ~2008
79446928311588938566311 ~2008
79455448191589108963911 ~2008
79456143591589122871911 ~2008
79457410911589148218311 ~2008
Exponent Prime Factor Dig. Year
79459833711589196674311 ~2008
79464276831589285536711 ~2008
794675251914304154534312 ~2011
79472927511589458550311 ~2008
79475733831589514676711 ~2008
794940086319078562071312 ~2011
79496256414769775384711 ~2009
79498596111589971922311 ~2008
79505668311590113366311 ~2008
79506565791590131315911 ~2008
79507104296360568343311 ~2010
79518171231590363424711 ~2008
79518453111590369062311 ~2008
79518911631590378232711 ~2008
79524251391590485027911 ~2008
79524657231590493144711 ~2008
79524801774771488106311 ~2009
79526153991590523079911 ~2008
79528736991590574739911 ~2008
79529089791590581795911 ~2008
79530472431590609448711 ~2008
79533602511590672050311 ~2008
79539514191590790283911 ~2008
79543293711590865874311 ~2008
79544955374772697322311 ~2009
Exponent Prime Factor Dig. Year
79547143316363771464911 ~2010
79556177391591123547911 ~2008
79560610796364848863311 ~2010
79564461677956446167111 ~2010
79566541191591330823911 ~2008
79569542511591390850311 ~2008
79572926991591458539911 ~2008
79573066311591461326311 ~2008
79574735391591494707911 ~2008
795751096130238541651912 ~2011
79575457791591509155911 ~2008
79583586591591671731911 ~2008
79586957991591739159911 ~2008
79592070231591841404711 ~2008
79593056031591861120711 ~2008
795934944123878048323112 ~2011
79594413591591888271911 ~2008
79595176791591903535911 ~2008
795983352714327700348712 ~2011
79598571797959857179111 ~2010
79599363591591987271911 ~2008
79599555614775973336711 ~2010
79599783711591995674311 ~2008
79600454174776027250311 ~2010
79602086991592041739911 ~2008
Exponent Prime Factor Dig. Year
79603744814776224688711 ~2010
79604542734776272563911 ~2010
79606531431592130628711 ~2008
79609476231592189524711 ~2008
79611906231592238124711 ~2008
79613745176369099613711 ~2010
79616261991592325239911 ~2008
79620003231592400064711 ~2008
79626094431592521888711 ~2008
79627106631592542132711 ~2008
79633784334778027059911 ~2010
79638428631592768572711 ~2008
79642804311592856086311 ~2008
79647000591592940011911 ~2008
79649893976371991517711 ~2010
79652116191593042323911 ~2008
79652618237965261823111 ~2010
79653770534779226231911 ~2010
79656263031593125260711 ~2008
79656301311593126026311 ~2008
79656710991593134219911 ~2008
79659395334779563719911 ~2010
79660327191593206543911 ~2008
79663977111593279542311 ~2008
79671462077967146207111 ~2010
Home
4.888.230 digits
e-mail
25-06-29