Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
39989360573199148845711 ~2007
3999060119799812023910 ~2006
39990690132399441407911 ~2007
3999081539799816307910 ~2006
3999377351799875470310 ~2006
3999418151799883630310 ~2006
3999425879799885175910 ~2006
3999443771799888754310 ~2006
3999470543799894108710 ~2006
39997293618799404594311 ~2009
3999749639799949927910 ~2006
3999787703799957540710 ~2006
3999988631799997726310 ~2006
40000666493200053319311 ~2007
4000179983800035996710 ~2006
40002969773200237581711 ~2007
40007237572400434254311 ~2007
4001188643800237728710 ~2006
4001203403800240680710 ~2006
4001229359800245871910 ~2006
4001230223800246044710 ~2006
4001239283800247856710 ~2006
40012583332400754999911 ~2007
40012823393201025871311 ~2007
4001374271800274854310 ~2006
Exponent Prime Factor Digits Year
4001382383800276476710 ~2006
4001419451800283890310 ~2006
4001452391800290478310 ~2006
4001611343800322268710 ~2006
40017414379604179448911 ~2009
4001767019800353403910 ~2006
40020134932401208095911 ~2007
4002039791800407958310 ~2006
4002186431800437286310 ~2006
4002323459800464691910 ~2006
4002372323800474464710 ~2006
40025105397204518970311 ~2008
4002549599800509919910 ~2006
40025812514002581251111 ~2008
40030794773202463581711 ~2007
40032387138807125168711 ~2009
4003607519800721503910 ~2006
40036077372402164642311 ~2007
400364250713612384523912 ~2009
4003755419800751083910 ~2006
4003788023800757604710 ~2006
4003911251800782250310 ~2006
400419793721622668859912 ~2010
4004263859800852771910 ~2006
4004277611800855522310 ~2006
Exponent Prime Factor Digits Year
40043660393203492831311 ~2007
4005010283801002056710 ~2006
40050981976408157115311 ~2008
40051370332403082219911 ~2007
4005140603801028120710 ~2006
40053243473204259477711 ~2007
4005329351801065870310 ~2006
4005460691801092138310 ~2006
4005801323801160264710 ~2006
4006593611801318722310 ~2006
4006672751801334550310 ~2006
4006732799801346559910 ~2006
40067575073205406005711 ~2007
4006776419801355283910 ~2006
40069591613205567328911 ~2007
4007040179801408035910 ~2006
4007095451801419090310 ~2006
40072346877213022436711 ~2008
4007330891801466178310 ~2006
4007464511801492902310 ~2006
4007485043801497008710 ~2006
4007689799801537959910 ~2006
4007710331801542066310 ~2006
4007778371801555674310 ~2006
4007884319801576863910 ~2006
Exponent Prime Factor Digits Year
4007931731801586346310 ~2006
40080518714008051871111 ~2008
4008077039801615407910 ~2006
40080990132404859407911 ~2007
40084116616413458657711 ~2008
40084428736413508596911 ~2008
40084581413206766512911 ~2007
40085885412405153124711 ~2007
4008659471801731894310 ~2006
400872011312827904361712 ~2009
40087588372405255302311 ~2007
4008808871801761774310 ~2006
4008860039801772007910 ~2006
400901459948108175188112 ~2010
40090729439621775063311 ~2009
4009081319801816263910 ~2006
4009374923801874984710 ~2006
4009397039801879407910 ~2006
4009436771801887354310 ~2006
40094885212405693112711 ~2007
4009660139801932027910 ~2006
400974851332077988104112 ~2010
4009781663801956332710 ~2006
4010058743802011748710 ~2006
4010154971802030994310 ~2006
Home
4.724.182 digits
e-mail
25-04-13