Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
4010283311802056662310 ~2006
40103462093208276967311 ~2007
4010507951802101590310 ~2006
4010745803802149160710 ~2006
40107656236417224996911 ~2008
4010770139802154027910 ~2006
4010859299802171859910 ~2006
401091814739306997840712 ~2010
4010924279802184855910 ~2006
40112083793208966703311 ~2007
4011374879802274975910 ~2006
40114820172406889210311 ~2007
4011612743802322548710 ~2006
4011775811802355162310 ~2006
40121229772407273786311 ~2007
4012127363802425472710 ~2006
4012467383802493476710 ~2006
4012882799802576559910 ~2006
40128888299630933189711 ~2009
40129203439631008823311 ~2009
4012968023802593604710 ~2006
40132184772407931086311 ~2007
4013543483802708696710 ~2006
40136606572408196394311 ~2007
40138538212408312292711 ~2007
Exponent Prime Factor Digits Year
4013864663802772932710 ~2006
4014121703802824340710 ~2006
401441944719269213345712 ~2009
4014562043802912408710 ~2006
40148419132408905147911 ~2007
4014908063802981612710 ~2006
40149291893211943351311 ~2007
4014981923802996384710 ~2006
40152430514015243051111 ~2008
4015335539803067107910 ~2006
4015551203803110240710 ~2006
4015713671803142734310 ~2006
4015721939803144387910 ~2006
4015787459803157491910 ~2006
4016030783803206156710 ~2006
40161064073212885125711 ~2007
4016169359803233871910 ~2006
4016217923803243584710 ~2006
4016230199803246039910 ~2006
4016293751803258750310 ~2006
4016479991803295998310 ~2006
4016506379803301275910 ~2006
40165195812409911748711 ~2007
40166093412409965604711 ~2007
4016718599803343719910 ~2006
Exponent Prime Factor Digits Year
4016770559803354111910 ~2006
401679553712050386611112 ~2009
4016878139803375627910 ~2006
40171771679641225200911 ~2009
4017215759803443151910 ~2006
4017216431803443286310 ~2006
4017336131803467226310 ~2006
40173764532410425871911 ~2007
401741284928925372512912 ~2010
40174909932410494595911 ~2007
4017566519803513303910 ~2006
40177730935624882330311 ~2008
4017802319803560463910 ~2006
4017848363803569672710 ~2006
4017902939803580587910 ~2006
40179242416428678785711 ~2008
40180222932410813375911 ~2007
4018093511803618702310 ~2006
40181098973214487917711 ~2007
4018167071803633414310 ~2006
4018237991803647598310 ~2006
40184319293214745543311 ~2007
4018666979803733395910 ~2006
4018846439803769287910 ~2006
40190322732411419363911 ~2007
Exponent Prime Factor Digits Year
4019118011803823602310 ~2006
4019196803803839360710 ~2006
4019307863803861572710 ~2006
4019469299803893859910 ~2006
4019597819803919563910 ~2006
4019676179803935235910 ~2006
4019691971803938394310 ~2006
4019961503803992300710 ~2006
4020378839804075767910 ~2006
402048418316081936732112 ~2009
4020536939804107387910 ~2006
402058963112865886819312 ~2009
4020680291804136058310 ~2006
4020690203804138040710 ~2006
4020786323804157264710 ~2006
402091205322517107496912 ~2010
4021055963804211192710 ~2006
40212550132412753007911 ~2007
4021415063804283012710 ~2006
4021420163804284032710 ~2006
40214755938847246304711 ~2009
4021493603804298720710 ~2006
4021594331804318866310 ~2006
4021612643804322528710 ~2006
4021769243804353848710 ~2006
Home
4.724.182 digits
e-mail
25-04-13