Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
3063305891612661178310 ~2005
3063336179612667235910 ~2005
3063353999612670799910 ~2005
3063613499612722699910 ~2005
30639202571838352154311 ~2006
30640283234902445316911 ~2007
30641581731838494903911 ~2006
3064235939612847187910 ~2005
3064292711612858542310 ~2005
3064366859612873371910 ~2005
3064435271612887054310 ~2005
30644563211838673792711 ~2006
3064748243612949648710 ~2005
3064822763612964552710 ~2005
306482419366200202568912 ~2010
3064863671612972734310 ~2005
30649053531838943211911 ~2006
3064909499612981899910 ~2005
3064993619612998723910 ~2005
3065096063613019212710 ~2005
3065144279613028855910 ~2005
3065243999613048799910 ~2005
30653522593065352259111 ~2007
3065548379613109675910 ~2005
3065563079613112615910 ~2005
Exponent Prime Factor Digits Year
3065603759613120751910 ~2005
30656356971839381418311 ~2006
3065656739613131347910 ~2005
30657332872452586629711 ~2007
3065919959613183991910 ~2005
30659249572452739965711 ~2007
3066110639613222127910 ~2005
30662017571839721054311 ~2006
3066324011613264802310 ~2005
3066431171613286234310 ~2005
30666200092453296007311 ~2007
30666794571840007674311 ~2006
306676416773602340008112 ~2010
3066816611613363322310 ~2005
3067002443613400488710 ~2005
3067240103613448020710 ~2005
3067253303613450660710 ~2005
30673541392453883311311 ~2007
3067436903613487380710 ~2005
30674563972453965117711 ~2007
3067637591613527518310 ~2005
3067672259613534451910 ~2005
30676739272454139141711 ~2007
30677276872454182149711 ~2007
3067731011613546202310 ~2005
Exponent Prime Factor Digits Year
3067813271613562654310 ~2005
30678814131840728847911 ~2006
3067881779613576355910 ~2005
306789377924543150232112 ~2009
30680828331840849699911 ~2006
3068464571613692914310 ~2005
3068903039613780607910 ~2005
3068948279613789655910 ~2005
30692188612455375088911 ~2007
3069260483613852096710 ~2005
3069311603613862320710 ~2005
3069365363613873072710 ~2005
3069516563613903312710 ~2005
3069669371613933874310 ~2005
30696852434911496388911 ~2007
30697405011841844300711 ~2006
3069762191613952438310 ~2005
3069794699613958939910 ~2005
3069825959613965191910 ~2005
30701092393070109239111 ~2007
3070145471614029094310 ~2005
30702457931842147475911 ~2006
3070263923614052784710 ~2005
3070406903614081380710 ~2005
3070523003614104600710 ~2005
Exponent Prime Factor Digits Year
3070581011614116202310 ~2005
3070903499614180699910 ~2005
3070954343614190868710 ~2005
3071014931614202986310 ~2005
3071119151614223830310 ~2005
307114084754052078907312 ~2010
3071289311614257862310 ~2005
3071344883614268976710 ~2005
3071473043614294608710 ~2005
3071490791614298158310 ~2005
30716377979214913391111 ~2008
3071936999614387399910 ~2005
3072323363614464672710 ~2005
3072418859614483771910 ~2005
3072520991614504198310 ~2005
30725264897374063573711 ~2008
30725417411843525044711 ~2006
3072858311614571662310 ~2005
3072862379614572475910 ~2005
3072925343614585068710 ~2005
3072935819614587163910 ~2005
3073169699614633939910 ~2005
30733520277376044864911 ~2008
3073780343614756068710 ~2005
3073859363614771872710 ~2005
Home
4.903.097 digits
e-mail
25-07-08